144 lines
3.9 KiB
Python
144 lines
3.9 KiB
Python
from contextlib import nullcontext
|
|
import copy
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas._libs.missing import is_matching_na
|
|
from pandas.compat import is_numpy_dev
|
|
|
|
from pandas.core.dtypes.common import is_float
|
|
|
|
from pandas import (
|
|
Index,
|
|
MultiIndex,
|
|
Series,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"arr, idx",
|
|
[
|
|
([1, 2, 3, 4], [0, 2, 1, 3]),
|
|
([1, np.nan, 3, np.nan], [0, 2, 1, 3]),
|
|
(
|
|
[1, np.nan, 3, np.nan],
|
|
MultiIndex.from_tuples([(0, "a"), (1, "b"), (2, "c"), (3, "c")]),
|
|
),
|
|
],
|
|
)
|
|
def test_equals(arr, idx):
|
|
s1 = Series(arr, index=idx)
|
|
s2 = s1.copy()
|
|
assert s1.equals(s2)
|
|
|
|
s1[1] = 9
|
|
assert not s1.equals(s2)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"val", [1, 1.1, 1 + 1j, True, "abc", [1, 2], (1, 2), {1, 2}, {"a": 1}, None]
|
|
)
|
|
def test_equals_list_array(val):
|
|
# GH20676 Verify equals operator for list of Numpy arrays
|
|
arr = np.array([1, 2])
|
|
s1 = Series([arr, arr])
|
|
s2 = s1.copy()
|
|
assert s1.equals(s2)
|
|
|
|
s1[1] = val
|
|
|
|
cm = (
|
|
tm.assert_produces_warning(FutureWarning, check_stacklevel=False)
|
|
if isinstance(val, str) and not is_numpy_dev
|
|
else nullcontext()
|
|
)
|
|
with cm:
|
|
assert not s1.equals(s2)
|
|
|
|
|
|
def test_equals_false_negative():
|
|
# GH8437 Verify false negative behavior of equals function for dtype object
|
|
arr = [False, np.nan]
|
|
s1 = Series(arr)
|
|
s2 = s1.copy()
|
|
s3 = Series(index=range(2), dtype=object)
|
|
s4 = s3.copy()
|
|
s5 = s3.copy()
|
|
s6 = s3.copy()
|
|
|
|
s3[:-1] = s4[:-1] = s5[0] = s6[0] = False
|
|
assert s1.equals(s1)
|
|
assert s1.equals(s2)
|
|
assert s1.equals(s3)
|
|
assert s1.equals(s4)
|
|
assert s1.equals(s5)
|
|
assert s5.equals(s6)
|
|
|
|
|
|
def test_equals_matching_nas():
|
|
# matching but not identical NAs
|
|
left = Series([np.datetime64("NaT")], dtype=object)
|
|
right = Series([np.datetime64("NaT")], dtype=object)
|
|
assert left.equals(right)
|
|
assert Index(left).equals(Index(right))
|
|
assert left.array.equals(right.array)
|
|
|
|
left = Series([np.timedelta64("NaT")], dtype=object)
|
|
right = Series([np.timedelta64("NaT")], dtype=object)
|
|
assert left.equals(right)
|
|
assert Index(left).equals(Index(right))
|
|
assert left.array.equals(right.array)
|
|
|
|
left = Series([np.float64("NaN")], dtype=object)
|
|
right = Series([np.float64("NaN")], dtype=object)
|
|
assert left.equals(right)
|
|
assert Index(left, dtype=left.dtype).equals(Index(right, dtype=right.dtype))
|
|
assert left.array.equals(right.array)
|
|
|
|
|
|
def test_equals_mismatched_nas(nulls_fixture, nulls_fixture2):
|
|
# GH#39650
|
|
left = nulls_fixture
|
|
right = nulls_fixture2
|
|
if hasattr(right, "copy"):
|
|
right = right.copy()
|
|
else:
|
|
right = copy.copy(right)
|
|
|
|
ser = Series([left], dtype=object)
|
|
ser2 = Series([right], dtype=object)
|
|
|
|
if is_matching_na(left, right):
|
|
assert ser.equals(ser2)
|
|
elif (left is None and is_float(right)) or (right is None and is_float(left)):
|
|
assert ser.equals(ser2)
|
|
else:
|
|
assert not ser.equals(ser2)
|
|
|
|
|
|
def test_equals_none_vs_nan():
|
|
# GH#39650
|
|
ser = Series([1, None], dtype=object)
|
|
ser2 = Series([1, np.nan], dtype=object)
|
|
|
|
assert ser.equals(ser2)
|
|
assert Index(ser, dtype=ser.dtype).equals(Index(ser2, dtype=ser2.dtype))
|
|
assert ser.array.equals(ser2.array)
|
|
|
|
|
|
def test_equals_None_vs_float():
|
|
# GH#44190
|
|
left = Series([-np.inf, np.nan, -1.0, 0.0, 1.0, 10 / 3, np.inf], dtype=object)
|
|
right = Series([None] * len(left))
|
|
|
|
# these series were found to be equal due to a bug, check that they are correctly
|
|
# found to not equal
|
|
assert not left.equals(right)
|
|
assert not right.equals(left)
|
|
assert not left.to_frame().equals(right.to_frame())
|
|
assert not right.to_frame().equals(left.to_frame())
|
|
assert not Index(left, dtype="object").equals(Index(right, dtype="object"))
|
|
assert not Index(right, dtype="object").equals(Index(left, dtype="object"))
|