142 lines
6.0 KiB
Python
142 lines
6.0 KiB
Python
"""Test functions for the sparse.linalg.norm module
|
|
"""
|
|
|
|
import pytest
|
|
import numpy as np
|
|
from numpy.linalg import norm as npnorm
|
|
from numpy.testing import assert_allclose, assert_equal
|
|
from pytest import raises as assert_raises
|
|
|
|
import scipy.sparse
|
|
from scipy.sparse.linalg import norm as spnorm
|
|
|
|
|
|
# https://github.com/scipy/scipy/issues/16031
|
|
def test_sparray_norm():
|
|
row = np.array([0, 0, 1, 1])
|
|
col = np.array([0, 1, 2, 3])
|
|
data = np.array([4, 5, 7, 9])
|
|
test_arr = scipy.sparse.coo_array((data, (row, col)), shape=(2, 4))
|
|
test_mat = scipy.sparse.coo_matrix((data, (row, col)), shape=(2, 4))
|
|
assert_equal(spnorm(test_arr, ord=1, axis=0), np.array([4, 5, 7, 9]))
|
|
assert_equal(spnorm(test_mat, ord=1, axis=0), np.array([4, 5, 7, 9]))
|
|
assert_equal(spnorm(test_arr, ord=1, axis=1), np.array([9, 16]))
|
|
assert_equal(spnorm(test_mat, ord=1, axis=1), np.array([9, 16]))
|
|
|
|
|
|
class TestNorm:
|
|
def setup_method(self):
|
|
a = np.arange(9) - 4
|
|
b = a.reshape((3, 3))
|
|
self.b = scipy.sparse.csr_matrix(b)
|
|
|
|
def test_matrix_norm(self):
|
|
|
|
# Frobenius norm is the default
|
|
assert_allclose(spnorm(self.b), 7.745966692414834)
|
|
assert_allclose(spnorm(self.b, 'fro'), 7.745966692414834)
|
|
|
|
assert_allclose(spnorm(self.b, np.inf), 9)
|
|
assert_allclose(spnorm(self.b, -np.inf), 2)
|
|
assert_allclose(spnorm(self.b, 1), 7)
|
|
assert_allclose(spnorm(self.b, -1), 6)
|
|
# Only floating or complex floating dtype supported by svds.
|
|
with pytest.warns(UserWarning, match="The problem size"):
|
|
assert_allclose(spnorm(self.b.astype(np.float64), 2),
|
|
7.348469228349534)
|
|
|
|
# _multi_svd_norm is not implemented for sparse matrix
|
|
assert_raises(NotImplementedError, spnorm, self.b, -2)
|
|
|
|
def test_matrix_norm_axis(self):
|
|
for m, axis in ((self.b, None), (self.b, (0, 1)), (self.b.T, (1, 0))):
|
|
assert_allclose(spnorm(m, axis=axis), 7.745966692414834)
|
|
assert_allclose(spnorm(m, 'fro', axis=axis), 7.745966692414834)
|
|
assert_allclose(spnorm(m, np.inf, axis=axis), 9)
|
|
assert_allclose(spnorm(m, -np.inf, axis=axis), 2)
|
|
assert_allclose(spnorm(m, 1, axis=axis), 7)
|
|
assert_allclose(spnorm(m, -1, axis=axis), 6)
|
|
|
|
def test_vector_norm(self):
|
|
v = [4.5825756949558398, 4.2426406871192848, 4.5825756949558398]
|
|
for m, a in (self.b, 0), (self.b.T, 1):
|
|
for axis in a, (a, ), a-2, (a-2, ):
|
|
assert_allclose(spnorm(m, 1, axis=axis), [7, 6, 7])
|
|
assert_allclose(spnorm(m, np.inf, axis=axis), [4, 3, 4])
|
|
assert_allclose(spnorm(m, axis=axis), v)
|
|
assert_allclose(spnorm(m, ord=2, axis=axis), v)
|
|
assert_allclose(spnorm(m, ord=None, axis=axis), v)
|
|
|
|
def test_norm_exceptions(self):
|
|
m = self.b
|
|
assert_raises(TypeError, spnorm, m, None, 1.5)
|
|
assert_raises(TypeError, spnorm, m, None, [2])
|
|
assert_raises(ValueError, spnorm, m, None, ())
|
|
assert_raises(ValueError, spnorm, m, None, (0, 1, 2))
|
|
assert_raises(ValueError, spnorm, m, None, (0, 0))
|
|
assert_raises(ValueError, spnorm, m, None, (0, 2))
|
|
assert_raises(ValueError, spnorm, m, None, (-3, 0))
|
|
assert_raises(ValueError, spnorm, m, None, 2)
|
|
assert_raises(ValueError, spnorm, m, None, -3)
|
|
assert_raises(ValueError, spnorm, m, 'plate_of_shrimp', 0)
|
|
assert_raises(ValueError, spnorm, m, 'plate_of_shrimp', (0, 1))
|
|
|
|
|
|
class TestVsNumpyNorm:
|
|
_sparse_types = (
|
|
scipy.sparse.bsr_matrix,
|
|
scipy.sparse.coo_matrix,
|
|
scipy.sparse.csc_matrix,
|
|
scipy.sparse.csr_matrix,
|
|
scipy.sparse.dia_matrix,
|
|
scipy.sparse.dok_matrix,
|
|
scipy.sparse.lil_matrix,
|
|
)
|
|
_test_matrices = (
|
|
(np.arange(9) - 4).reshape((3, 3)),
|
|
[
|
|
[1, 2, 3],
|
|
[-1, 1, 4]],
|
|
[
|
|
[1, 0, 3],
|
|
[-1, 1, 4j]],
|
|
)
|
|
|
|
def test_sparse_matrix_norms(self):
|
|
for sparse_type in self._sparse_types:
|
|
for M in self._test_matrices:
|
|
S = sparse_type(M)
|
|
assert_allclose(spnorm(S), npnorm(M))
|
|
assert_allclose(spnorm(S, 'fro'), npnorm(M, 'fro'))
|
|
assert_allclose(spnorm(S, np.inf), npnorm(M, np.inf))
|
|
assert_allclose(spnorm(S, -np.inf), npnorm(M, -np.inf))
|
|
assert_allclose(spnorm(S, 1), npnorm(M, 1))
|
|
assert_allclose(spnorm(S, -1), npnorm(M, -1))
|
|
|
|
def test_sparse_matrix_norms_with_axis(self):
|
|
for sparse_type in self._sparse_types:
|
|
for M in self._test_matrices:
|
|
S = sparse_type(M)
|
|
for axis in None, (0, 1), (1, 0):
|
|
assert_allclose(spnorm(S, axis=axis), npnorm(M, axis=axis))
|
|
for ord in 'fro', np.inf, -np.inf, 1, -1:
|
|
assert_allclose(spnorm(S, ord, axis=axis),
|
|
npnorm(M, ord, axis=axis))
|
|
# Some numpy matrix norms are allergic to negative axes.
|
|
for axis in (-2, -1), (-1, -2), (1, -2):
|
|
assert_allclose(spnorm(S, axis=axis), npnorm(M, axis=axis))
|
|
assert_allclose(spnorm(S, 'f', axis=axis),
|
|
npnorm(M, 'f', axis=axis))
|
|
assert_allclose(spnorm(S, 'fro', axis=axis),
|
|
npnorm(M, 'fro', axis=axis))
|
|
|
|
def test_sparse_vector_norms(self):
|
|
for sparse_type in self._sparse_types:
|
|
for M in self._test_matrices:
|
|
S = sparse_type(M)
|
|
for axis in (0, 1, -1, -2, (0, ), (1, ), (-1, ), (-2, )):
|
|
assert_allclose(spnorm(S, axis=axis), npnorm(M, axis=axis))
|
|
for ord in None, 2, np.inf, -np.inf, 1, 0.5, 0.42:
|
|
assert_allclose(spnorm(S, ord, axis=axis),
|
|
npnorm(M, ord, axis=axis))
|