99 lines
2.8 KiB
Python
99 lines
2.8 KiB
Python
import numpy as np
|
|
from numpy.testing import assert_array_almost_equal, assert_
|
|
from scipy.sparse import csr_matrix, csc_matrix, lil_matrix
|
|
|
|
import pytest
|
|
|
|
|
|
def test_csc_getrow():
|
|
N = 10
|
|
np.random.seed(0)
|
|
X = np.random.random((N, N))
|
|
X[X > 0.7] = 0
|
|
Xcsc = csc_matrix(X)
|
|
|
|
for i in range(N):
|
|
arr_row = X[i:i + 1, :]
|
|
csc_row = Xcsc.getrow(i)
|
|
|
|
assert_array_almost_equal(arr_row, csc_row.toarray())
|
|
assert_(type(csc_row) is csr_matrix)
|
|
|
|
|
|
def test_csc_getcol():
|
|
N = 10
|
|
np.random.seed(0)
|
|
X = np.random.random((N, N))
|
|
X[X > 0.7] = 0
|
|
Xcsc = csc_matrix(X)
|
|
|
|
for i in range(N):
|
|
arr_col = X[:, i:i + 1]
|
|
csc_col = Xcsc.getcol(i)
|
|
|
|
assert_array_almost_equal(arr_col, csc_col.toarray())
|
|
assert_(type(csc_col) is csc_matrix)
|
|
|
|
@pytest.mark.parametrize("matrix_input, axis, expected_shape",
|
|
[(csc_matrix([[1, 0],
|
|
[0, 0],
|
|
[0, 2]]),
|
|
0, (0, 2)),
|
|
(csc_matrix([[1, 0],
|
|
[0, 0],
|
|
[0, 2]]),
|
|
1, (3, 0)),
|
|
(csc_matrix([[1, 0],
|
|
[0, 0],
|
|
[0, 2]]),
|
|
'both', (0, 0)),
|
|
(csc_matrix([[0, 1, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0],
|
|
[0, 0, 2, 3, 0, 1]]),
|
|
0, (0, 6))])
|
|
def test_csc_empty_slices(matrix_input, axis, expected_shape):
|
|
# see gh-11127 for related discussion
|
|
slice_1 = matrix_input.A.shape[0] - 1
|
|
slice_2 = slice_1
|
|
slice_3 = slice_2 - 1
|
|
|
|
if axis == 0:
|
|
actual_shape_1 = matrix_input[slice_1:slice_2, :].A.shape
|
|
actual_shape_2 = matrix_input[slice_1:slice_3, :].A.shape
|
|
elif axis == 1:
|
|
actual_shape_1 = matrix_input[:, slice_1:slice_2].A.shape
|
|
actual_shape_2 = matrix_input[:, slice_1:slice_3].A.shape
|
|
elif axis == 'both':
|
|
actual_shape_1 = matrix_input[slice_1:slice_2, slice_1:slice_2].A.shape
|
|
actual_shape_2 = matrix_input[slice_1:slice_3, slice_1:slice_3].A.shape
|
|
|
|
assert actual_shape_1 == expected_shape
|
|
assert actual_shape_1 == actual_shape_2
|
|
|
|
|
|
@pytest.mark.parametrize('ax', (-2, -1, 0, 1, None))
|
|
def test_argmax_overflow(ax):
|
|
# See gh-13646: Windows integer overflow for large sparse matrices.
|
|
dim = (100000, 100000)
|
|
A = lil_matrix(dim)
|
|
A[-2, -2] = 42
|
|
A[-3, -3] = 0.1234
|
|
A = csc_matrix(A)
|
|
idx = A.argmax(axis=ax)
|
|
|
|
if ax is None:
|
|
# idx is a single flattened index
|
|
# that we need to convert to a 2d index pair;
|
|
# can't do this with np.unravel_index because
|
|
# the dimensions are too large
|
|
ii = idx % dim[0]
|
|
jj = idx // dim[0]
|
|
else:
|
|
# idx is an array of size of A.shape[ax];
|
|
# check the max index to make sure no overflows
|
|
# we encountered
|
|
assert np.count_nonzero(idx) == A.nnz
|
|
ii, jj = np.max(idx), np.argmax(idx)
|
|
|
|
assert A[ii, jj] == A[-2, -2]
|