Inzynierka/Lib/site-packages/scipy/special/_precompute/lambertw.py
2023-06-02 12:51:02 +02:00

69 lines
1.9 KiB
Python

"""Compute a Pade approximation for the principal branch of the
Lambert W function around 0 and compare it to various other
approximations.
"""
import numpy as np
try:
import mpmath
import matplotlib.pyplot as plt
except ImportError:
pass
def lambertw_pade():
derivs = [mpmath.diff(mpmath.lambertw, 0, n=n) for n in range(6)]
p, q = mpmath.pade(derivs, 3, 2)
return p, q
def main():
print(__doc__)
with mpmath.workdps(50):
p, q = lambertw_pade()
p, q = p[::-1], q[::-1]
print("p = {}".format(p))
print("q = {}".format(q))
x, y = np.linspace(-1.5, 1.5, 75), np.linspace(-1.5, 1.5, 75)
x, y = np.meshgrid(x, y)
z = x + 1j*y
lambertw_std = []
for z0 in z.flatten():
lambertw_std.append(complex(mpmath.lambertw(z0)))
lambertw_std = np.array(lambertw_std).reshape(x.shape)
fig, axes = plt.subplots(nrows=3, ncols=1)
# Compare Pade approximation to true result
p = np.array([float(p0) for p0 in p])
q = np.array([float(q0) for q0 in q])
pade_approx = np.polyval(p, z)/np.polyval(q, z)
pade_err = abs(pade_approx - lambertw_std)
axes[0].pcolormesh(x, y, pade_err)
# Compare two terms of asymptotic series to true result
asy_approx = np.log(z) - np.log(np.log(z))
asy_err = abs(asy_approx - lambertw_std)
axes[1].pcolormesh(x, y, asy_err)
# Compare two terms of the series around the branch point to the
# true result
p = np.sqrt(2*(np.exp(1)*z + 1))
series_approx = -1 + p - p**2/3
series_err = abs(series_approx - lambertw_std)
im = axes[2].pcolormesh(x, y, series_err)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
fig, ax = plt.subplots(nrows=1, ncols=1)
pade_better = pade_err < asy_err
im = ax.pcolormesh(x, y, pade_better)
t = np.linspace(-0.3, 0.3)
ax.plot(-2.5*abs(t) - 0.2, t, 'r')
fig.colorbar(im, ax=ax)
plt.show()
if __name__ == '__main__':
main()