Inzynierka/Lib/site-packages/sklearn/cluster/tests/test_k_means.py
2023-06-02 12:51:02 +02:00

1266 lines
44 KiB
Python

"""Testing for K-means"""
import re
import sys
import warnings
import numpy as np
from scipy import sparse as sp
import pytest
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils.fixes import threadpool_limits
from sklearn.base import clone
from sklearn.exceptions import ConvergenceWarning
from sklearn.utils.extmath import row_norms
from sklearn.metrics import pairwise_distances
from sklearn.metrics import pairwise_distances_argmin
from sklearn.metrics.cluster import v_measure_score
from sklearn.cluster import KMeans, k_means, kmeans_plusplus
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster._kmeans import _labels_inertia
from sklearn.cluster._kmeans import _mini_batch_step
from sklearn.cluster._k_means_common import _relocate_empty_clusters_dense
from sklearn.cluster._k_means_common import _relocate_empty_clusters_sparse
from sklearn.cluster._k_means_common import _euclidean_dense_dense_wrapper
from sklearn.cluster._k_means_common import _euclidean_sparse_dense_wrapper
from sklearn.cluster._k_means_common import _inertia_dense
from sklearn.cluster._k_means_common import _inertia_sparse
from sklearn.cluster._k_means_common import _is_same_clustering
from sklearn.utils._testing import create_memmap_backed_data
from sklearn.datasets import make_blobs
from io import StringIO
# TODO(1.4): Remove
msg = (
r"The default value of `n_init` will change from \d* to 'auto' in 1.4. Set the"
r" value of `n_init` explicitly to suppress the warning:FutureWarning"
)
pytestmark = pytest.mark.filterwarnings("ignore:" + msg)
# non centered, sparse centers to check the
centers = np.array(
[
[0.0, 5.0, 0.0, 0.0, 0.0],
[1.0, 1.0, 4.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 5.0, 1.0],
]
)
n_samples = 100
n_clusters, n_features = centers.shape
X, true_labels = make_blobs(
n_samples=n_samples, centers=centers, cluster_std=1.0, random_state=42
)
X_csr = sp.csr_matrix(X)
@pytest.mark.parametrize(
"array_constr", [np.array, sp.csr_matrix], ids=["dense", "sparse"]
)
@pytest.mark.parametrize("algo", ["lloyd", "elkan"])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_kmeans_results(array_constr, algo, dtype):
# Checks that KMeans works as intended on toy dataset by comparing with
# expected results computed by hand.
X = array_constr([[0, 0], [0.5, 0], [0.5, 1], [1, 1]], dtype=dtype)
sample_weight = [3, 1, 1, 3]
init_centers = np.array([[0, 0], [1, 1]], dtype=dtype)
expected_labels = [0, 0, 1, 1]
expected_inertia = 0.375
expected_centers = np.array([[0.125, 0], [0.875, 1]], dtype=dtype)
expected_n_iter = 2
kmeans = KMeans(n_clusters=2, n_init=1, init=init_centers, algorithm=algo)
kmeans.fit(X, sample_weight=sample_weight)
assert_array_equal(kmeans.labels_, expected_labels)
assert_allclose(kmeans.inertia_, expected_inertia)
assert_allclose(kmeans.cluster_centers_, expected_centers)
assert kmeans.n_iter_ == expected_n_iter
@pytest.mark.parametrize(
"array_constr", [np.array, sp.csr_matrix], ids=["dense", "sparse"]
)
@pytest.mark.parametrize("algo", ["lloyd", "elkan"])
def test_kmeans_relocated_clusters(array_constr, algo):
# check that empty clusters are relocated as expected
X = array_constr([[0, 0], [0.5, 0], [0.5, 1], [1, 1]])
# second center too far from others points will be empty at first iter
init_centers = np.array([[0.5, 0.5], [3, 3]])
kmeans = KMeans(n_clusters=2, n_init=1, init=init_centers, algorithm=algo)
kmeans.fit(X)
expected_n_iter = 3
expected_inertia = 0.25
assert_allclose(kmeans.inertia_, expected_inertia)
assert kmeans.n_iter_ == expected_n_iter
# There are two acceptable ways of relocating clusters in this example, the output
# depends on how the argpartition strategy breaks ties. We accept both outputs.
try:
expected_labels = [0, 0, 1, 1]
expected_centers = [[0.25, 0], [0.75, 1]]
assert_array_equal(kmeans.labels_, expected_labels)
assert_allclose(kmeans.cluster_centers_, expected_centers)
except AssertionError:
expected_labels = [1, 1, 0, 0]
expected_centers = [[0.75, 1.0], [0.25, 0.0]]
assert_array_equal(kmeans.labels_, expected_labels)
assert_allclose(kmeans.cluster_centers_, expected_centers)
@pytest.mark.parametrize(
"array_constr", [np.array, sp.csr_matrix], ids=["dense", "sparse"]
)
def test_relocate_empty_clusters(array_constr):
# test for the _relocate_empty_clusters_(dense/sparse) helpers
# Synthetic dataset with 3 obvious clusters of different sizes
X = np.array([-10.0, -9.5, -9, -8.5, -8, -1, 1, 9, 9.5, 10]).reshape(-1, 1)
X = array_constr(X)
sample_weight = np.ones(10)
# centers all initialized to the first point of X
centers_old = np.array([-10.0, -10, -10]).reshape(-1, 1)
# With this initialization, all points will be assigned to the first center
# At this point a center in centers_new is the weighted sum of the points
# it contains if it's not empty, otherwise it is the same as before.
centers_new = np.array([-16.5, -10, -10]).reshape(-1, 1)
weight_in_clusters = np.array([10.0, 0, 0])
labels = np.zeros(10, dtype=np.int32)
if array_constr is np.array:
_relocate_empty_clusters_dense(
X, sample_weight, centers_old, centers_new, weight_in_clusters, labels
)
else:
_relocate_empty_clusters_sparse(
X.data,
X.indices,
X.indptr,
sample_weight,
centers_old,
centers_new,
weight_in_clusters,
labels,
)
# The relocation scheme will take the 2 points farthest from the center and
# assign them to the 2 empty clusters, i.e. points at 10 and at 9.9. The
# first center will be updated to contain the other 8 points.
assert_array_equal(weight_in_clusters, [8, 1, 1])
assert_allclose(centers_new, [[-36], [10], [9.5]])
@pytest.mark.parametrize("distribution", ["normal", "blobs"])
@pytest.mark.parametrize(
"array_constr", [np.array, sp.csr_matrix], ids=["dense", "sparse"]
)
@pytest.mark.parametrize("tol", [1e-2, 1e-8, 1e-100, 0])
def test_kmeans_elkan_results(distribution, array_constr, tol, global_random_seed):
# Check that results are identical between lloyd and elkan algorithms
rnd = np.random.RandomState(global_random_seed)
if distribution == "normal":
X = rnd.normal(size=(5000, 10))
else:
X, _ = make_blobs(random_state=rnd)
X[X < 0] = 0
X = array_constr(X)
km_lloyd = KMeans(n_clusters=5, random_state=global_random_seed, n_init=1, tol=tol)
km_elkan = KMeans(
algorithm="elkan",
n_clusters=5,
random_state=global_random_seed,
n_init=1,
tol=tol,
)
km_lloyd.fit(X)
km_elkan.fit(X)
assert_allclose(km_elkan.cluster_centers_, km_lloyd.cluster_centers_)
assert_array_equal(km_elkan.labels_, km_lloyd.labels_)
assert km_elkan.n_iter_ == km_lloyd.n_iter_
assert km_elkan.inertia_ == pytest.approx(km_lloyd.inertia_, rel=1e-6)
@pytest.mark.parametrize("algorithm", ["lloyd", "elkan"])
def test_kmeans_convergence(algorithm, global_random_seed):
# Check that KMeans stops when convergence is reached when tol=0. (#16075)
rnd = np.random.RandomState(global_random_seed)
X = rnd.normal(size=(5000, 10))
max_iter = 300
km = KMeans(
algorithm=algorithm,
n_clusters=5,
random_state=global_random_seed,
n_init=1,
tol=0,
max_iter=max_iter,
).fit(X)
assert km.n_iter_ < max_iter
@pytest.mark.parametrize("algorithm", ["auto", "full"])
def test_algorithm_auto_full_deprecation_warning(algorithm):
X = np.random.rand(100, 2)
kmeans = KMeans(algorithm=algorithm)
with pytest.warns(
FutureWarning,
match=(
f"algorithm='{algorithm}' is deprecated, it will "
"be removed in 1.3. Using 'lloyd' instead."
),
):
kmeans.fit(X)
assert kmeans._algorithm == "lloyd"
def test_minibatch_update_consistency(global_random_seed):
# Check that dense and sparse minibatch update give the same results
rng = np.random.RandomState(global_random_seed)
centers_old = centers + rng.normal(size=centers.shape)
centers_old_csr = centers_old.copy()
centers_new = np.zeros_like(centers_old)
centers_new_csr = np.zeros_like(centers_old_csr)
weight_sums = np.zeros(centers_old.shape[0], dtype=X.dtype)
weight_sums_csr = np.zeros(centers_old.shape[0], dtype=X.dtype)
sample_weight = np.ones(X.shape[0], dtype=X.dtype)
# extract a small minibatch
X_mb = X[:10]
X_mb_csr = X_csr[:10]
sample_weight_mb = sample_weight[:10]
# step 1: compute the dense minibatch update
old_inertia = _mini_batch_step(
X_mb,
sample_weight_mb,
centers_old,
centers_new,
weight_sums,
np.random.RandomState(global_random_seed),
random_reassign=False,
)
assert old_inertia > 0.0
# compute the new inertia on the same batch to check that it decreased
labels, new_inertia = _labels_inertia(X_mb, sample_weight_mb, centers_new)
assert new_inertia > 0.0
assert new_inertia < old_inertia
# step 2: compute the sparse minibatch update
old_inertia_csr = _mini_batch_step(
X_mb_csr,
sample_weight_mb,
centers_old_csr,
centers_new_csr,
weight_sums_csr,
np.random.RandomState(global_random_seed),
random_reassign=False,
)
assert old_inertia_csr > 0.0
# compute the new inertia on the same batch to check that it decreased
labels_csr, new_inertia_csr = _labels_inertia(
X_mb_csr, sample_weight_mb, centers_new_csr
)
assert new_inertia_csr > 0.0
assert new_inertia_csr < old_inertia_csr
# step 3: check that sparse and dense updates lead to the same results
assert_array_equal(labels, labels_csr)
assert_allclose(centers_new, centers_new_csr)
assert_allclose(old_inertia, old_inertia_csr)
assert_allclose(new_inertia, new_inertia_csr)
def _check_fitted_model(km):
# check that the number of clusters centers and distinct labels match
# the expectation
centers = km.cluster_centers_
assert centers.shape == (n_clusters, n_features)
labels = km.labels_
assert np.unique(labels).shape[0] == n_clusters
# check that the labels assignment are perfect (up to a permutation)
assert_allclose(v_measure_score(true_labels, labels), 1.0)
assert km.inertia_ > 0.0
@pytest.mark.parametrize("data", [X, X_csr], ids=["dense", "sparse"])
@pytest.mark.parametrize(
"init",
["random", "k-means++", centers, lambda X, k, random_state: centers],
ids=["random", "k-means++", "ndarray", "callable"],
)
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_all_init(Estimator, data, init):
# Check KMeans and MiniBatchKMeans with all possible init.
n_init = 10 if isinstance(init, str) else 1
km = Estimator(
init=init, n_clusters=n_clusters, random_state=42, n_init=n_init
).fit(data)
_check_fitted_model(km)
@pytest.mark.parametrize(
"init",
["random", "k-means++", centers, lambda X, k, random_state: centers],
ids=["random", "k-means++", "ndarray", "callable"],
)
def test_minibatch_kmeans_partial_fit_init(init):
# Check MiniBatchKMeans init with partial_fit
n_init = 10 if isinstance(init, str) else 1
km = MiniBatchKMeans(
init=init, n_clusters=n_clusters, random_state=0, n_init=n_init
)
for i in range(100):
# "random" init requires many batches to recover the true labels.
km.partial_fit(X)
_check_fitted_model(km)
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_fortran_aligned_data(Estimator, global_random_seed):
# Check that KMeans works with fortran-aligned data.
X_fortran = np.asfortranarray(X)
centers_fortran = np.asfortranarray(centers)
km_c = Estimator(
n_clusters=n_clusters, init=centers, n_init=1, random_state=global_random_seed
).fit(X)
km_f = Estimator(
n_clusters=n_clusters,
init=centers_fortran,
n_init=1,
random_state=global_random_seed,
).fit(X_fortran)
assert_allclose(km_c.cluster_centers_, km_f.cluster_centers_)
assert_array_equal(km_c.labels_, km_f.labels_)
def test_minibatch_kmeans_verbose():
# Check verbose mode of MiniBatchKMeans for better coverage.
km = MiniBatchKMeans(n_clusters=n_clusters, random_state=42, verbose=1)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
km.fit(X)
finally:
sys.stdout = old_stdout
@pytest.mark.parametrize("algorithm", ["lloyd", "elkan"])
@pytest.mark.parametrize("tol", [1e-2, 0])
def test_kmeans_verbose(algorithm, tol, capsys):
# Check verbose mode of KMeans for better coverage.
X = np.random.RandomState(0).normal(size=(5000, 10))
KMeans(
algorithm=algorithm,
n_clusters=n_clusters,
random_state=42,
init="random",
n_init=1,
tol=tol,
verbose=1,
).fit(X)
captured = capsys.readouterr()
assert re.search(r"Initialization complete", captured.out)
assert re.search(r"Iteration [0-9]+, inertia", captured.out)
if tol == 0:
assert re.search(r"strict convergence", captured.out)
else:
assert re.search(r"center shift .* within tolerance", captured.out)
def test_minibatch_kmeans_warning_init_size():
# Check that a warning is raised when init_size is smaller than n_clusters
with pytest.warns(
RuntimeWarning, match=r"init_size.* should be larger than n_clusters"
):
MiniBatchKMeans(init_size=10, n_clusters=20).fit(X)
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_warning_n_init_precomputed_centers(Estimator):
# Check that a warning is raised when n_init > 1 and an array is passed for
# the init parameter.
with pytest.warns(
RuntimeWarning,
match="Explicit initial center position passed: performing only one init",
):
Estimator(init=centers, n_clusters=n_clusters, n_init=10).fit(X)
def test_minibatch_sensible_reassign(global_random_seed):
# check that identical initial clusters are reassigned
# also a regression test for when there are more desired reassignments than
# samples.
zeroed_X, true_labels = make_blobs(
n_samples=100, centers=5, random_state=global_random_seed
)
zeroed_X[::2, :] = 0
km = MiniBatchKMeans(
n_clusters=20, batch_size=10, random_state=global_random_seed, init="random"
).fit(zeroed_X)
# there should not be too many exact zero cluster centers
assert km.cluster_centers_.any(axis=1).sum() > 10
# do the same with batch-size > X.shape[0] (regression test)
km = MiniBatchKMeans(
n_clusters=20, batch_size=200, random_state=global_random_seed, init="random"
).fit(zeroed_X)
# there should not be too many exact zero cluster centers
assert km.cluster_centers_.any(axis=1).sum() > 10
# do the same with partial_fit API
km = MiniBatchKMeans(n_clusters=20, random_state=global_random_seed, init="random")
for i in range(100):
km.partial_fit(zeroed_X)
# there should not be too many exact zero cluster centers
assert km.cluster_centers_.any(axis=1).sum() > 10
@pytest.mark.parametrize("data", [X, X_csr], ids=["dense", "sparse"])
def test_minibatch_reassign(data, global_random_seed):
# Check the reassignment part of the minibatch step with very high or very
# low reassignment ratio.
perfect_centers = np.empty((n_clusters, n_features))
for i in range(n_clusters):
perfect_centers[i] = X[true_labels == i].mean(axis=0)
sample_weight = np.ones(n_samples)
centers_new = np.empty_like(perfect_centers)
# Give a perfect initialization, but a large reassignment_ratio, as a
# result many centers should be reassigned and the model should no longer
# be good
score_before = -_labels_inertia(data, sample_weight, perfect_centers, 1)[1]
_mini_batch_step(
data,
sample_weight,
perfect_centers,
centers_new,
np.zeros(n_clusters),
np.random.RandomState(global_random_seed),
random_reassign=True,
reassignment_ratio=1,
)
score_after = -_labels_inertia(data, sample_weight, centers_new, 1)[1]
assert score_before > score_after
# Give a perfect initialization, with a small reassignment_ratio,
# no center should be reassigned.
_mini_batch_step(
data,
sample_weight,
perfect_centers,
centers_new,
np.zeros(n_clusters),
np.random.RandomState(global_random_seed),
random_reassign=True,
reassignment_ratio=1e-15,
)
assert_allclose(centers_new, perfect_centers)
def test_minibatch_with_many_reassignments():
# Test for the case that the number of clusters to reassign is bigger
# than the batch_size. Run the test with 100 clusters and a batch_size of
# 10 because it turned out that these values ensure that the number of
# clusters to reassign is always bigger than the batch_size.
MiniBatchKMeans(
n_clusters=100,
batch_size=10,
init_size=n_samples,
random_state=42,
verbose=True,
).fit(X)
def test_minibatch_kmeans_init_size():
# Check the internal _init_size attribute of MiniBatchKMeans
# default init size should be 3 * batch_size
km = MiniBatchKMeans(n_clusters=10, batch_size=5, n_init=1).fit(X)
assert km._init_size == 15
# if 3 * batch size < n_clusters, it should then be 3 * n_clusters
km = MiniBatchKMeans(n_clusters=10, batch_size=1, n_init=1).fit(X)
assert km._init_size == 30
# it should not be larger than n_samples
km = MiniBatchKMeans(
n_clusters=10, batch_size=5, n_init=1, init_size=n_samples + 1
).fit(X)
assert km._init_size == n_samples
@pytest.mark.parametrize("tol, max_no_improvement", [(1e-4, None), (0, 10)])
def test_minibatch_declared_convergence(capsys, tol, max_no_improvement):
# Check convergence detection based on ewa batch inertia or on
# small center change.
X, _, centers = make_blobs(centers=3, random_state=0, return_centers=True)
km = MiniBatchKMeans(
n_clusters=3,
init=centers,
batch_size=20,
tol=tol,
random_state=0,
max_iter=10,
n_init=1,
verbose=1,
max_no_improvement=max_no_improvement,
)
km.fit(X)
assert 1 < km.n_iter_ < 10
captured = capsys.readouterr()
if max_no_improvement is None:
assert "Converged (small centers change)" in captured.out
if tol == 0:
assert "Converged (lack of improvement in inertia)" in captured.out
def test_minibatch_iter_steps():
# Check consistency of n_iter_ and n_steps_ attributes.
batch_size = 30
n_samples = X.shape[0]
km = MiniBatchKMeans(n_clusters=3, batch_size=batch_size, random_state=0).fit(X)
# n_iter_ is the number of started epochs
assert km.n_iter_ == np.ceil((km.n_steps_ * batch_size) / n_samples)
assert isinstance(km.n_iter_, int)
# without stopping condition, max_iter should be reached
km = MiniBatchKMeans(
n_clusters=3,
batch_size=batch_size,
random_state=0,
tol=0,
max_no_improvement=None,
max_iter=10,
).fit(X)
assert km.n_iter_ == 10
assert km.n_steps_ == (10 * n_samples) // batch_size
assert isinstance(km.n_steps_, int)
def test_kmeans_copyx():
# Check that copy_x=False returns nearly equal X after de-centering.
my_X = X.copy()
km = KMeans(copy_x=False, n_clusters=n_clusters, random_state=42)
km.fit(my_X)
_check_fitted_model(km)
# check that my_X is de-centered
assert_allclose(my_X, X)
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_score_max_iter(Estimator, global_random_seed):
# Check that fitting KMeans or MiniBatchKMeans with more iterations gives
# better score
X = np.random.RandomState(global_random_seed).randn(100, 10)
km1 = Estimator(n_init=1, random_state=global_random_seed, max_iter=1)
s1 = km1.fit(X).score(X)
km2 = Estimator(n_init=1, random_state=global_random_seed, max_iter=10)
s2 = km2.fit(X).score(X)
assert s2 > s1
@pytest.mark.parametrize(
"array_constr", [np.array, sp.csr_matrix], ids=["dense", "sparse"]
)
@pytest.mark.parametrize(
"Estimator, algorithm",
[(KMeans, "lloyd"), (KMeans, "elkan"), (MiniBatchKMeans, None)],
)
@pytest.mark.parametrize("max_iter", [2, 100])
def test_kmeans_predict(
Estimator, algorithm, array_constr, max_iter, global_dtype, global_random_seed
):
# Check the predict method and the equivalence between fit.predict and
# fit_predict.
X, _ = make_blobs(
n_samples=200, n_features=10, centers=10, random_state=global_random_seed
)
X = array_constr(X, dtype=global_dtype)
km = Estimator(
n_clusters=10,
init="random",
n_init=10,
max_iter=max_iter,
random_state=global_random_seed,
)
if algorithm is not None:
km.set_params(algorithm=algorithm)
km.fit(X)
labels = km.labels_
# re-predict labels for training set using predict
pred = km.predict(X)
assert_array_equal(pred, labels)
# re-predict labels for training set using fit_predict
pred = km.fit_predict(X)
assert_array_equal(pred, labels)
# predict centroid labels
pred = km.predict(km.cluster_centers_)
assert_array_equal(pred, np.arange(10))
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_dense_sparse(Estimator, global_random_seed):
# Check that the results are the same for dense and sparse input.
sample_weight = np.random.RandomState(global_random_seed).random_sample(
(n_samples,)
)
km_dense = Estimator(
n_clusters=n_clusters, random_state=global_random_seed, n_init=1
)
km_dense.fit(X, sample_weight=sample_weight)
km_sparse = Estimator(
n_clusters=n_clusters, random_state=global_random_seed, n_init=1
)
km_sparse.fit(X_csr, sample_weight=sample_weight)
assert_array_equal(km_dense.labels_, km_sparse.labels_)
assert_allclose(km_dense.cluster_centers_, km_sparse.cluster_centers_)
@pytest.mark.parametrize(
"init", ["random", "k-means++", centers], ids=["random", "k-means++", "ndarray"]
)
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_predict_dense_sparse(Estimator, init):
# check that models trained on sparse input also works for dense input at
# predict time and vice versa.
n_init = 10 if isinstance(init, str) else 1
km = Estimator(n_clusters=n_clusters, init=init, n_init=n_init, random_state=0)
km.fit(X_csr)
assert_array_equal(km.predict(X), km.labels_)
km.fit(X)
assert_array_equal(km.predict(X_csr), km.labels_)
@pytest.mark.parametrize(
"array_constr", [np.array, sp.csr_matrix], ids=["dense", "sparse"]
)
@pytest.mark.parametrize("dtype", [np.int32, np.int64])
@pytest.mark.parametrize("init", ["k-means++", "ndarray"])
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_integer_input(Estimator, array_constr, dtype, init, global_random_seed):
# Check that KMeans and MiniBatchKMeans work with integer input.
X_dense = np.array([[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]])
X = array_constr(X_dense, dtype=dtype)
n_init = 1 if init == "ndarray" else 10
init = X_dense[:2] if init == "ndarray" else init
km = Estimator(
n_clusters=2, init=init, n_init=n_init, random_state=global_random_seed
)
if Estimator is MiniBatchKMeans:
km.set_params(batch_size=2)
km.fit(X)
# Internally integer input should be converted to float64
assert km.cluster_centers_.dtype == np.float64
expected_labels = [0, 1, 1, 0, 0, 1]
assert_allclose(v_measure_score(km.labels_, expected_labels), 1.0)
# Same with partial_fit (#14314)
if Estimator is MiniBatchKMeans:
km = clone(km).partial_fit(X)
assert km.cluster_centers_.dtype == np.float64
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_transform(Estimator, global_random_seed):
# Check the transform method
km = Estimator(n_clusters=n_clusters, random_state=global_random_seed).fit(X)
# Transorfming cluster_centers_ should return the pairwise distances
# between centers
Xt = km.transform(km.cluster_centers_)
assert_allclose(Xt, pairwise_distances(km.cluster_centers_))
# In particular, diagonal must be 0
assert_array_equal(Xt.diagonal(), np.zeros(n_clusters))
# Transorfming X should return the pairwise distances between X and the
# centers
Xt = km.transform(X)
assert_allclose(Xt, pairwise_distances(X, km.cluster_centers_))
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_fit_transform(Estimator, global_random_seed):
# Check equivalence between fit.transform and fit_transform
X1 = Estimator(random_state=global_random_seed, n_init=1).fit(X).transform(X)
X2 = Estimator(random_state=global_random_seed, n_init=1).fit_transform(X)
assert_allclose(X1, X2)
def test_n_init(global_random_seed):
# Check that increasing the number of init increases the quality
previous_inertia = np.inf
for n_init in [1, 5, 10]:
# set max_iter=1 to avoid finding the global minimum and get the same
# inertia each time
km = KMeans(
n_clusters=n_clusters,
init="random",
n_init=n_init,
random_state=global_random_seed,
max_iter=1,
).fit(X)
assert km.inertia_ <= previous_inertia
def test_k_means_function(global_random_seed):
# test calling the k_means function directly
cluster_centers, labels, inertia = k_means(
X, n_clusters=n_clusters, sample_weight=None, random_state=global_random_seed
)
assert cluster_centers.shape == (n_clusters, n_features)
assert np.unique(labels).shape[0] == n_clusters
# check that the labels assignment are perfect (up to a permutation)
assert_allclose(v_measure_score(true_labels, labels), 1.0)
assert inertia > 0.0
@pytest.mark.parametrize("data", [X, X_csr], ids=["dense", "sparse"])
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_float_precision(Estimator, data, global_random_seed):
# Check that the results are the same for single and double precision.
km = Estimator(n_init=1, random_state=global_random_seed)
inertia = {}
Xt = {}
centers = {}
labels = {}
for dtype in [np.float64, np.float32]:
X = data.astype(dtype, copy=False)
km.fit(X)
inertia[dtype] = km.inertia_
Xt[dtype] = km.transform(X)
centers[dtype] = km.cluster_centers_
labels[dtype] = km.labels_
# dtype of cluster centers has to be the dtype of the input data
assert km.cluster_centers_.dtype == dtype
# same with partial_fit
if Estimator is MiniBatchKMeans:
km.partial_fit(X[0:3])
assert km.cluster_centers_.dtype == dtype
# compare arrays with low precision since the difference between 32 and
# 64 bit comes from an accumulation of rounding errors.
assert_allclose(inertia[np.float32], inertia[np.float64], rtol=1e-4)
assert_allclose(Xt[np.float32], Xt[np.float64], atol=Xt[np.float64].max() * 1e-4)
assert_allclose(
centers[np.float32], centers[np.float64], atol=centers[np.float64].max() * 1e-4
)
assert_array_equal(labels[np.float32], labels[np.float64])
@pytest.mark.parametrize("dtype", [np.int32, np.int64, np.float32, np.float64])
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_centers_not_mutated(Estimator, dtype):
# Check that KMeans and MiniBatchKMeans won't mutate the user provided
# init centers silently even if input data and init centers have the same
# type.
X_new_type = X.astype(dtype, copy=False)
centers_new_type = centers.astype(dtype, copy=False)
km = Estimator(init=centers_new_type, n_clusters=n_clusters, n_init=1)
km.fit(X_new_type)
assert not np.may_share_memory(km.cluster_centers_, centers_new_type)
@pytest.mark.parametrize("data", [X, X_csr], ids=["dense", "sparse"])
def test_kmeans_init_fitted_centers(data):
# Check that starting fitting from a local optimum shouldn't change the
# solution
km1 = KMeans(n_clusters=n_clusters).fit(data)
km2 = KMeans(n_clusters=n_clusters, init=km1.cluster_centers_, n_init=1).fit(data)
assert_allclose(km1.cluster_centers_, km2.cluster_centers_)
def test_kmeans_warns_less_centers_than_unique_points(global_random_seed):
# Check KMeans when the number of found clusters is smaller than expected
X = np.asarray([[0, 0], [0, 1], [1, 0], [1, 0]]) # last point is duplicated
km = KMeans(n_clusters=4, random_state=global_random_seed)
# KMeans should warn that fewer labels than cluster centers have been used
msg = (
r"Number of distinct clusters \(3\) found smaller than "
r"n_clusters \(4\). Possibly due to duplicate points in X."
)
with pytest.warns(ConvergenceWarning, match=msg):
km.fit(X)
# only three distinct points, so only three clusters
# can have points assigned to them
assert set(km.labels_) == set(range(3))
def _sort_centers(centers):
return np.sort(centers, axis=0)
def test_weighted_vs_repeated(global_random_seed):
# Check that a sample weight of N should yield the same result as an N-fold
# repetition of the sample. Valid only if init is precomputed, otherwise
# rng produces different results. Not valid for MinibatchKMeans due to rng
# to extract minibatches.
sample_weight = np.random.RandomState(global_random_seed).randint(
1, 5, size=n_samples
)
X_repeat = np.repeat(X, sample_weight, axis=0)
km = KMeans(
init=centers, n_init=1, n_clusters=n_clusters, random_state=global_random_seed
)
km_weighted = clone(km).fit(X, sample_weight=sample_weight)
repeated_labels = np.repeat(km_weighted.labels_, sample_weight)
km_repeated = clone(km).fit(X_repeat)
assert_array_equal(km_repeated.labels_, repeated_labels)
assert_allclose(km_weighted.inertia_, km_repeated.inertia_)
assert_allclose(
_sort_centers(km_weighted.cluster_centers_),
_sort_centers(km_repeated.cluster_centers_),
)
@pytest.mark.parametrize("data", [X, X_csr], ids=["dense", "sparse"])
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_unit_weights_vs_no_weights(Estimator, data, global_random_seed):
# Check that not passing sample weights should be equivalent to passing
# sample weights all equal to one.
sample_weight = np.ones(n_samples)
km = Estimator(n_clusters=n_clusters, random_state=global_random_seed, n_init=1)
km_none = clone(km).fit(data, sample_weight=None)
km_ones = clone(km).fit(data, sample_weight=sample_weight)
assert_array_equal(km_none.labels_, km_ones.labels_)
assert_allclose(km_none.cluster_centers_, km_ones.cluster_centers_)
@pytest.mark.parametrize("data", [X, X_csr], ids=["dense", "sparse"])
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_scaled_weights(Estimator, data, global_random_seed):
# Check that scaling all sample weights by a common factor
# shouldn't change the result
sample_weight = np.random.RandomState(global_random_seed).uniform(size=n_samples)
km = Estimator(n_clusters=n_clusters, random_state=global_random_seed, n_init=1)
km_orig = clone(km).fit(data, sample_weight=sample_weight)
km_scaled = clone(km).fit(data, sample_weight=0.5 * sample_weight)
assert_array_equal(km_orig.labels_, km_scaled.labels_)
assert_allclose(km_orig.cluster_centers_, km_scaled.cluster_centers_)
def test_kmeans_elkan_iter_attribute():
# Regression test on bad n_iter_ value. Previous bug n_iter_ was one off
# it's right value (#11340).
km = KMeans(algorithm="elkan", max_iter=1).fit(X)
assert km.n_iter_ == 1
@pytest.mark.parametrize(
"array_constr", [np.array, sp.csr_matrix], ids=["dense", "sparse"]
)
def test_kmeans_empty_cluster_relocated(array_constr):
# check that empty clusters are correctly relocated when using sample
# weights (#13486)
X = array_constr([[-1], [1]])
sample_weight = [1.9, 0.1]
init = np.array([[-1], [10]])
km = KMeans(n_clusters=2, init=init, n_init=1)
km.fit(X, sample_weight=sample_weight)
assert len(set(km.labels_)) == 2
assert_allclose(km.cluster_centers_, [[-1], [1]])
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_result_equal_in_diff_n_threads(Estimator, global_random_seed):
# Check that KMeans/MiniBatchKMeans give the same results in parallel mode
# than in sequential mode.
rnd = np.random.RandomState(global_random_seed)
X = rnd.normal(size=(50, 10))
with threadpool_limits(limits=1, user_api="openmp"):
result_1 = (
Estimator(n_clusters=n_clusters, random_state=global_random_seed)
.fit(X)
.labels_
)
with threadpool_limits(limits=2, user_api="openmp"):
result_2 = (
Estimator(n_clusters=n_clusters, random_state=global_random_seed)
.fit(X)
.labels_
)
assert_array_equal(result_1, result_2)
def test_warning_elkan_1_cluster():
# Check warning messages specific to KMeans
with pytest.warns(
RuntimeWarning,
match="algorithm='elkan' doesn't make sense for a single cluster",
):
KMeans(n_clusters=1, algorithm="elkan").fit(X)
@pytest.mark.parametrize(
"array_constr", [np.array, sp.csr_matrix], ids=["dense", "sparse"]
)
@pytest.mark.parametrize("algo", ["lloyd", "elkan"])
def test_k_means_1_iteration(array_constr, algo, global_random_seed):
# check the results after a single iteration (E-step M-step E-step) by
# comparing against a pure python implementation.
X = np.random.RandomState(global_random_seed).uniform(size=(100, 5))
init_centers = X[:5]
X = array_constr(X)
def py_kmeans(X, init):
new_centers = init.copy()
labels = pairwise_distances_argmin(X, init)
for label in range(init.shape[0]):
new_centers[label] = X[labels == label].mean(axis=0)
labels = pairwise_distances_argmin(X, new_centers)
return labels, new_centers
py_labels, py_centers = py_kmeans(X, init_centers)
cy_kmeans = KMeans(
n_clusters=5, n_init=1, init=init_centers, algorithm=algo, max_iter=1
).fit(X)
cy_labels = cy_kmeans.labels_
cy_centers = cy_kmeans.cluster_centers_
assert_array_equal(py_labels, cy_labels)
assert_allclose(py_centers, cy_centers)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("squared", [True, False])
def test_euclidean_distance(dtype, squared, global_random_seed):
# Check that the _euclidean_(dense/sparse)_dense helpers produce correct
# results
rng = np.random.RandomState(global_random_seed)
a_sparse = sp.random(
1, 100, density=0.5, format="csr", random_state=rng, dtype=dtype
)
a_dense = a_sparse.toarray().reshape(-1)
b = rng.randn(100).astype(dtype, copy=False)
b_squared_norm = (b**2).sum()
expected = ((a_dense - b) ** 2).sum()
expected = expected if squared else np.sqrt(expected)
distance_dense_dense = _euclidean_dense_dense_wrapper(a_dense, b, squared)
distance_sparse_dense = _euclidean_sparse_dense_wrapper(
a_sparse.data, a_sparse.indices, b, b_squared_norm, squared
)
rtol = 1e-4 if dtype == np.float32 else 1e-7
assert_allclose(distance_dense_dense, distance_sparse_dense, rtol=rtol)
assert_allclose(distance_dense_dense, expected, rtol=rtol)
assert_allclose(distance_sparse_dense, expected, rtol=rtol)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_inertia(dtype, global_random_seed):
# Check that the _inertia_(dense/sparse) helpers produce correct results.
rng = np.random.RandomState(global_random_seed)
X_sparse = sp.random(
100, 10, density=0.5, format="csr", random_state=rng, dtype=dtype
)
X_dense = X_sparse.toarray()
sample_weight = rng.randn(100).astype(dtype, copy=False)
centers = rng.randn(5, 10).astype(dtype, copy=False)
labels = rng.randint(5, size=100, dtype=np.int32)
distances = ((X_dense - centers[labels]) ** 2).sum(axis=1)
expected = np.sum(distances * sample_weight)
inertia_dense = _inertia_dense(X_dense, sample_weight, centers, labels, n_threads=1)
inertia_sparse = _inertia_sparse(
X_sparse, sample_weight, centers, labels, n_threads=1
)
rtol = 1e-4 if dtype == np.float32 else 1e-6
assert_allclose(inertia_dense, inertia_sparse, rtol=rtol)
assert_allclose(inertia_dense, expected, rtol=rtol)
assert_allclose(inertia_sparse, expected, rtol=rtol)
# Check the single_label parameter.
label = 1
mask = labels == label
distances = ((X_dense[mask] - centers[label]) ** 2).sum(axis=1)
expected = np.sum(distances * sample_weight[mask])
inertia_dense = _inertia_dense(
X_dense, sample_weight, centers, labels, n_threads=1, single_label=label
)
inertia_sparse = _inertia_sparse(
X_sparse, sample_weight, centers, labels, n_threads=1, single_label=label
)
assert_allclose(inertia_dense, inertia_sparse, rtol=rtol)
assert_allclose(inertia_dense, expected, rtol=rtol)
assert_allclose(inertia_sparse, expected, rtol=rtol)
# TODO(1.4): Remove
@pytest.mark.parametrize("Klass, default_n_init", [(KMeans, 10), (MiniBatchKMeans, 3)])
def test_change_n_init_future_warning(Klass, default_n_init):
est = Klass(n_init=1)
with warnings.catch_warnings():
warnings.simplefilter("error", FutureWarning)
est.fit(X)
default_n_init = 10 if Klass.__name__ == "KMeans" else 3
msg = (
f"The default value of `n_init` will change from {default_n_init} to 'auto'"
" in 1.4"
)
est = Klass()
with pytest.warns(FutureWarning, match=msg):
est.fit(X)
@pytest.mark.parametrize("Klass, default_n_init", [(KMeans, 10), (MiniBatchKMeans, 3)])
def test_n_init_auto(Klass, default_n_init):
est = Klass(n_init="auto", init="k-means++")
est.fit(X)
assert est._n_init == 1
est = Klass(n_init="auto", init="random")
est.fit(X)
assert est._n_init == 10 if Klass.__name__ == "KMeans" else 3
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_sample_weight_unchanged(Estimator):
# Check that sample_weight is not modified in place by KMeans (#17204)
X = np.array([[1], [2], [4]])
sample_weight = np.array([0.5, 0.2, 0.3])
Estimator(n_clusters=2, random_state=0).fit(X, sample_weight=sample_weight)
assert_array_equal(sample_weight, np.array([0.5, 0.2, 0.3]))
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
@pytest.mark.parametrize(
"param, match",
[
({"n_clusters": n_samples + 1}, r"n_samples.* should be >= n_clusters"),
(
{"init": X[:2]},
r"The shape of the initial centers .* does not match "
r"the number of clusters",
),
(
{"init": lambda X_, k, random_state: X_[:2]},
r"The shape of the initial centers .* does not match "
r"the number of clusters",
),
(
{"init": X[:8, :2]},
r"The shape of the initial centers .* does not match "
r"the number of features of the data",
),
(
{"init": lambda X_, k, random_state: X_[:8, :2]},
r"The shape of the initial centers .* does not match "
r"the number of features of the data",
),
],
)
def test_wrong_params(Estimator, param, match):
# Check that error are raised with clear error message when wrong values
# are passed for the parameters
# Set n_init=1 by default to avoid warning with precomputed init
km = Estimator(n_init=1)
with pytest.raises(ValueError, match=match):
km.set_params(**param).fit(X)
@pytest.mark.parametrize(
"param, match",
[
(
{"x_squared_norms": X[:2]},
r"The length of x_squared_norms .* should "
r"be equal to the length of n_samples",
),
],
)
def test_kmeans_plusplus_wrong_params(param, match):
with pytest.raises(ValueError, match=match):
kmeans_plusplus(X, n_clusters, **param)
@pytest.mark.parametrize("data", [X, X_csr])
@pytest.mark.parametrize("dtype", [np.float64, np.float32])
def test_kmeans_plusplus_output(data, dtype, global_random_seed):
# Check for the correct number of seeds and all positive values
data = data.astype(dtype)
centers, indices = kmeans_plusplus(
data, n_clusters, random_state=global_random_seed
)
# Check there are the correct number of indices and that all indices are
# positive and within the number of samples
assert indices.shape[0] == n_clusters
assert (indices >= 0).all()
assert (indices <= data.shape[0]).all()
# Check for the correct number of seeds and that they are bound by the data
assert centers.shape[0] == n_clusters
assert (centers.max(axis=0) <= data.max(axis=0)).all()
assert (centers.min(axis=0) >= data.min(axis=0)).all()
# Check that indices correspond to reported centers
# Use X for comparison rather than data, test still works against centers
# calculated with sparse data.
assert_allclose(X[indices].astype(dtype), centers)
@pytest.mark.parametrize("x_squared_norms", [row_norms(X, squared=True), None])
def test_kmeans_plusplus_norms(x_squared_norms):
# Check that defining x_squared_norms returns the same as default=None.
centers, indices = kmeans_plusplus(X, n_clusters, x_squared_norms=x_squared_norms)
assert_allclose(X[indices], centers)
def test_kmeans_plusplus_dataorder(global_random_seed):
# Check that memory layout does not effect result
centers_c, _ = kmeans_plusplus(X, n_clusters, random_state=global_random_seed)
X_fortran = np.asfortranarray(X)
centers_fortran, _ = kmeans_plusplus(
X_fortran, n_clusters, random_state=global_random_seed
)
assert_allclose(centers_c, centers_fortran)
def test_is_same_clustering():
# Sanity check for the _is_same_clustering utility function
labels1 = np.array([1, 0, 0, 1, 2, 0, 2, 1], dtype=np.int32)
assert _is_same_clustering(labels1, labels1, 3)
# these other labels represent the same clustering since we can retrieve the first
# labels by simply renaming the labels: 0 -> 1, 1 -> 2, 2 -> 0.
labels2 = np.array([0, 2, 2, 0, 1, 2, 1, 0], dtype=np.int32)
assert _is_same_clustering(labels1, labels2, 3)
# these other labels do not represent the same clustering since not all ones are
# mapped to a same value
labels3 = np.array([1, 0, 0, 2, 2, 0, 2, 1], dtype=np.int32)
assert not _is_same_clustering(labels1, labels3, 3)
@pytest.mark.parametrize(
"kwargs", ({"init": np.str_("k-means++")}, {"init": [[0, 0], [1, 1]], "n_init": 1})
)
def test_kmeans_with_array_like_or_np_scalar_init(kwargs):
"""Check that init works with numpy scalar strings.
Non-regression test for #21964.
"""
X = np.asarray([[0, 0], [0.5, 0], [0.5, 1], [1, 1]], dtype=np.float64)
clustering = KMeans(n_clusters=2, **kwargs)
# Does not raise
clustering.fit(X)
@pytest.mark.parametrize(
"Klass, method",
[(KMeans, "fit"), (MiniBatchKMeans, "fit"), (MiniBatchKMeans, "partial_fit")],
)
def test_feature_names_out(Klass, method):
"""Check `feature_names_out` for `KMeans` and `MiniBatchKMeans`."""
class_name = Klass.__name__.lower()
kmeans = Klass()
getattr(kmeans, method)(X)
n_clusters = kmeans.cluster_centers_.shape[0]
names_out = kmeans.get_feature_names_out()
assert_array_equal([f"{class_name}{i}" for i in range(n_clusters)], names_out)
@pytest.mark.parametrize("is_sparse", [True, False])
def test_predict_does_not_change_cluster_centers(is_sparse):
"""Check that predict does not change cluster centers.
Non-regression test for gh-24253.
"""
X, _ = make_blobs(n_samples=200, n_features=10, centers=10, random_state=0)
if is_sparse:
X = sp.csr_matrix(X)
kmeans = KMeans()
y_pred1 = kmeans.fit_predict(X)
# Make cluster_centers readonly
kmeans.cluster_centers_ = create_memmap_backed_data(kmeans.cluster_centers_)
kmeans.labels_ = create_memmap_backed_data(kmeans.labels_)
y_pred2 = kmeans.predict(X)
assert_array_equal(y_pred1, y_pred2)