458 lines
14 KiB
Python
458 lines
14 KiB
Python
import sys
|
|
|
|
import numpy as np
|
|
from scipy.linalg import block_diag
|
|
from scipy.sparse import csr_matrix
|
|
from scipy.special import psi
|
|
from numpy.testing import assert_array_equal
|
|
|
|
import pytest
|
|
|
|
from sklearn.decomposition import LatentDirichletAllocation
|
|
from sklearn.decomposition._online_lda_fast import (
|
|
_dirichlet_expectation_1d,
|
|
_dirichlet_expectation_2d,
|
|
)
|
|
|
|
from sklearn.utils._testing import assert_allclose
|
|
from sklearn.utils._testing import assert_array_almost_equal
|
|
from sklearn.utils._testing import assert_almost_equal
|
|
from sklearn.utils._testing import if_safe_multiprocessing_with_blas
|
|
|
|
from sklearn.exceptions import NotFittedError
|
|
from io import StringIO
|
|
|
|
|
|
def _build_sparse_mtx():
|
|
# Create 3 topics and each topic has 3 distinct words.
|
|
# (Each word only belongs to a single topic.)
|
|
n_components = 3
|
|
block = np.full((3, 3), n_components, dtype=int)
|
|
blocks = [block] * n_components
|
|
X = block_diag(*blocks)
|
|
X = csr_matrix(X)
|
|
return (n_components, X)
|
|
|
|
|
|
def test_lda_default_prior_params():
|
|
# default prior parameter should be `1 / topics`
|
|
# and verbose params should not affect result
|
|
n_components, X = _build_sparse_mtx()
|
|
prior = 1.0 / n_components
|
|
lda_1 = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
doc_topic_prior=prior,
|
|
topic_word_prior=prior,
|
|
random_state=0,
|
|
)
|
|
lda_2 = LatentDirichletAllocation(n_components=n_components, random_state=0)
|
|
topic_distr_1 = lda_1.fit_transform(X)
|
|
topic_distr_2 = lda_2.fit_transform(X)
|
|
assert_almost_equal(topic_distr_1, topic_distr_2)
|
|
|
|
|
|
def test_lda_fit_batch():
|
|
# Test LDA batch learning_offset (`fit` method with 'batch' learning)
|
|
rng = np.random.RandomState(0)
|
|
n_components, X = _build_sparse_mtx()
|
|
lda = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
evaluate_every=1,
|
|
learning_method="batch",
|
|
random_state=rng,
|
|
)
|
|
lda.fit(X)
|
|
|
|
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
|
for component in lda.components_:
|
|
# Find top 3 words in each LDA component
|
|
top_idx = set(component.argsort()[-3:][::-1])
|
|
assert tuple(sorted(top_idx)) in correct_idx_grps
|
|
|
|
|
|
def test_lda_fit_online():
|
|
# Test LDA online learning (`fit` method with 'online' learning)
|
|
rng = np.random.RandomState(0)
|
|
n_components, X = _build_sparse_mtx()
|
|
lda = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
learning_offset=10.0,
|
|
evaluate_every=1,
|
|
learning_method="online",
|
|
random_state=rng,
|
|
)
|
|
lda.fit(X)
|
|
|
|
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
|
for component in lda.components_:
|
|
# Find top 3 words in each LDA component
|
|
top_idx = set(component.argsort()[-3:][::-1])
|
|
assert tuple(sorted(top_idx)) in correct_idx_grps
|
|
|
|
|
|
def test_lda_partial_fit():
|
|
# Test LDA online learning (`partial_fit` method)
|
|
# (same as test_lda_batch)
|
|
rng = np.random.RandomState(0)
|
|
n_components, X = _build_sparse_mtx()
|
|
lda = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
learning_offset=10.0,
|
|
total_samples=100,
|
|
random_state=rng,
|
|
)
|
|
for i in range(3):
|
|
lda.partial_fit(X)
|
|
|
|
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
|
for c in lda.components_:
|
|
top_idx = set(c.argsort()[-3:][::-1])
|
|
assert tuple(sorted(top_idx)) in correct_idx_grps
|
|
|
|
|
|
def test_lda_dense_input():
|
|
# Test LDA with dense input.
|
|
rng = np.random.RandomState(0)
|
|
n_components, X = _build_sparse_mtx()
|
|
lda = LatentDirichletAllocation(
|
|
n_components=n_components, learning_method="batch", random_state=rng
|
|
)
|
|
lda.fit(X.toarray())
|
|
|
|
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
|
for component in lda.components_:
|
|
# Find top 3 words in each LDA component
|
|
top_idx = set(component.argsort()[-3:][::-1])
|
|
assert tuple(sorted(top_idx)) in correct_idx_grps
|
|
|
|
|
|
def test_lda_transform():
|
|
# Test LDA transform.
|
|
# Transform result cannot be negative and should be normalized
|
|
rng = np.random.RandomState(0)
|
|
X = rng.randint(5, size=(20, 10))
|
|
n_components = 3
|
|
lda = LatentDirichletAllocation(n_components=n_components, random_state=rng)
|
|
X_trans = lda.fit_transform(X)
|
|
assert (X_trans > 0.0).any()
|
|
assert_array_almost_equal(np.sum(X_trans, axis=1), np.ones(X_trans.shape[0]))
|
|
|
|
|
|
@pytest.mark.parametrize("method", ("online", "batch"))
|
|
def test_lda_fit_transform(method):
|
|
# Test LDA fit_transform & transform
|
|
# fit_transform and transform result should be the same
|
|
rng = np.random.RandomState(0)
|
|
X = rng.randint(10, size=(50, 20))
|
|
lda = LatentDirichletAllocation(
|
|
n_components=5, learning_method=method, random_state=rng
|
|
)
|
|
X_fit = lda.fit_transform(X)
|
|
X_trans = lda.transform(X)
|
|
assert_array_almost_equal(X_fit, X_trans, 4)
|
|
|
|
|
|
def test_lda_negative_input():
|
|
# test pass dense matrix with sparse negative input.
|
|
X = np.full((5, 10), -1.0)
|
|
lda = LatentDirichletAllocation()
|
|
regex = r"^Negative values in data passed"
|
|
with pytest.raises(ValueError, match=regex):
|
|
lda.fit(X)
|
|
|
|
|
|
def test_lda_no_component_error():
|
|
# test `perplexity` before `fit`
|
|
rng = np.random.RandomState(0)
|
|
X = rng.randint(4, size=(20, 10))
|
|
lda = LatentDirichletAllocation()
|
|
regex = (
|
|
"This LatentDirichletAllocation instance is not fitted yet. "
|
|
"Call 'fit' with appropriate arguments before using this "
|
|
"estimator."
|
|
)
|
|
with pytest.raises(NotFittedError, match=regex):
|
|
lda.perplexity(X)
|
|
|
|
|
|
@if_safe_multiprocessing_with_blas
|
|
@pytest.mark.parametrize("method", ("online", "batch"))
|
|
def test_lda_multi_jobs(method):
|
|
n_components, X = _build_sparse_mtx()
|
|
# Test LDA batch training with multi CPU
|
|
rng = np.random.RandomState(0)
|
|
lda = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
n_jobs=2,
|
|
learning_method=method,
|
|
evaluate_every=1,
|
|
random_state=rng,
|
|
)
|
|
lda.fit(X)
|
|
|
|
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
|
for c in lda.components_:
|
|
top_idx = set(c.argsort()[-3:][::-1])
|
|
assert tuple(sorted(top_idx)) in correct_idx_grps
|
|
|
|
|
|
@if_safe_multiprocessing_with_blas
|
|
def test_lda_partial_fit_multi_jobs():
|
|
# Test LDA online training with multi CPU
|
|
rng = np.random.RandomState(0)
|
|
n_components, X = _build_sparse_mtx()
|
|
lda = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
n_jobs=2,
|
|
learning_offset=5.0,
|
|
total_samples=30,
|
|
random_state=rng,
|
|
)
|
|
for i in range(2):
|
|
lda.partial_fit(X)
|
|
|
|
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
|
for c in lda.components_:
|
|
top_idx = set(c.argsort()[-3:][::-1])
|
|
assert tuple(sorted(top_idx)) in correct_idx_grps
|
|
|
|
|
|
def test_lda_preplexity_mismatch():
|
|
# test dimension mismatch in `perplexity` method
|
|
rng = np.random.RandomState(0)
|
|
n_components = rng.randint(3, 6)
|
|
n_samples = rng.randint(6, 10)
|
|
X = np.random.randint(4, size=(n_samples, 10))
|
|
lda = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
learning_offset=5.0,
|
|
total_samples=20,
|
|
random_state=rng,
|
|
)
|
|
lda.fit(X)
|
|
# invalid samples
|
|
invalid_n_samples = rng.randint(4, size=(n_samples + 1, n_components))
|
|
with pytest.raises(ValueError, match=r"Number of samples"):
|
|
lda._perplexity_precomp_distr(X, invalid_n_samples)
|
|
# invalid topic number
|
|
invalid_n_components = rng.randint(4, size=(n_samples, n_components + 1))
|
|
with pytest.raises(ValueError, match=r"Number of topics"):
|
|
lda._perplexity_precomp_distr(X, invalid_n_components)
|
|
|
|
|
|
@pytest.mark.parametrize("method", ("online", "batch"))
|
|
def test_lda_perplexity(method):
|
|
# Test LDA perplexity for batch training
|
|
# perplexity should be lower after each iteration
|
|
n_components, X = _build_sparse_mtx()
|
|
lda_1 = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
max_iter=1,
|
|
learning_method=method,
|
|
total_samples=100,
|
|
random_state=0,
|
|
)
|
|
lda_2 = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
max_iter=10,
|
|
learning_method=method,
|
|
total_samples=100,
|
|
random_state=0,
|
|
)
|
|
lda_1.fit(X)
|
|
perp_1 = lda_1.perplexity(X, sub_sampling=False)
|
|
|
|
lda_2.fit(X)
|
|
perp_2 = lda_2.perplexity(X, sub_sampling=False)
|
|
assert perp_1 >= perp_2
|
|
|
|
perp_1_subsampling = lda_1.perplexity(X, sub_sampling=True)
|
|
perp_2_subsampling = lda_2.perplexity(X, sub_sampling=True)
|
|
assert perp_1_subsampling >= perp_2_subsampling
|
|
|
|
|
|
@pytest.mark.parametrize("method", ("online", "batch"))
|
|
def test_lda_score(method):
|
|
# Test LDA score for batch training
|
|
# score should be higher after each iteration
|
|
n_components, X = _build_sparse_mtx()
|
|
lda_1 = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
max_iter=1,
|
|
learning_method=method,
|
|
total_samples=100,
|
|
random_state=0,
|
|
)
|
|
lda_2 = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
max_iter=10,
|
|
learning_method=method,
|
|
total_samples=100,
|
|
random_state=0,
|
|
)
|
|
lda_1.fit_transform(X)
|
|
score_1 = lda_1.score(X)
|
|
|
|
lda_2.fit_transform(X)
|
|
score_2 = lda_2.score(X)
|
|
assert score_2 >= score_1
|
|
|
|
|
|
def test_perplexity_input_format():
|
|
# Test LDA perplexity for sparse and dense input
|
|
# score should be the same for both dense and sparse input
|
|
n_components, X = _build_sparse_mtx()
|
|
lda = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
max_iter=1,
|
|
learning_method="batch",
|
|
total_samples=100,
|
|
random_state=0,
|
|
)
|
|
lda.fit(X)
|
|
perp_1 = lda.perplexity(X)
|
|
perp_2 = lda.perplexity(X.toarray())
|
|
assert_almost_equal(perp_1, perp_2)
|
|
|
|
|
|
def test_lda_score_perplexity():
|
|
# Test the relationship between LDA score and perplexity
|
|
n_components, X = _build_sparse_mtx()
|
|
lda = LatentDirichletAllocation(
|
|
n_components=n_components, max_iter=10, random_state=0
|
|
)
|
|
lda.fit(X)
|
|
perplexity_1 = lda.perplexity(X, sub_sampling=False)
|
|
|
|
score = lda.score(X)
|
|
perplexity_2 = np.exp(-1.0 * (score / np.sum(X.data)))
|
|
assert_almost_equal(perplexity_1, perplexity_2)
|
|
|
|
|
|
def test_lda_fit_perplexity():
|
|
# Test that the perplexity computed during fit is consistent with what is
|
|
# returned by the perplexity method
|
|
n_components, X = _build_sparse_mtx()
|
|
lda = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
max_iter=1,
|
|
learning_method="batch",
|
|
random_state=0,
|
|
evaluate_every=1,
|
|
)
|
|
lda.fit(X)
|
|
|
|
# Perplexity computed at end of fit method
|
|
perplexity1 = lda.bound_
|
|
|
|
# Result of perplexity method on the train set
|
|
perplexity2 = lda.perplexity(X)
|
|
|
|
assert_almost_equal(perplexity1, perplexity2)
|
|
|
|
|
|
def test_lda_empty_docs():
|
|
"""Test LDA on empty document (all-zero rows)."""
|
|
Z = np.zeros((5, 4))
|
|
for X in [Z, csr_matrix(Z)]:
|
|
lda = LatentDirichletAllocation(max_iter=750).fit(X)
|
|
assert_almost_equal(
|
|
lda.components_.sum(axis=0), np.ones(lda.components_.shape[1])
|
|
)
|
|
|
|
|
|
def test_dirichlet_expectation():
|
|
"""Test Cython version of Dirichlet expectation calculation."""
|
|
x = np.logspace(-100, 10, 10000)
|
|
expectation = np.empty_like(x)
|
|
_dirichlet_expectation_1d(x, 0, expectation)
|
|
assert_allclose(expectation, np.exp(psi(x) - psi(np.sum(x))), atol=1e-19)
|
|
|
|
x = x.reshape(100, 100)
|
|
assert_allclose(
|
|
_dirichlet_expectation_2d(x),
|
|
psi(x) - psi(np.sum(x, axis=1)[:, np.newaxis]),
|
|
rtol=1e-11,
|
|
atol=3e-9,
|
|
)
|
|
|
|
|
|
def check_verbosity(verbose, evaluate_every, expected_lines, expected_perplexities):
|
|
n_components, X = _build_sparse_mtx()
|
|
lda = LatentDirichletAllocation(
|
|
n_components=n_components,
|
|
max_iter=3,
|
|
learning_method="batch",
|
|
verbose=verbose,
|
|
evaluate_every=evaluate_every,
|
|
random_state=0,
|
|
)
|
|
out = StringIO()
|
|
old_out, sys.stdout = sys.stdout, out
|
|
try:
|
|
lda.fit(X)
|
|
finally:
|
|
sys.stdout = old_out
|
|
|
|
n_lines = out.getvalue().count("\n")
|
|
n_perplexity = out.getvalue().count("perplexity")
|
|
assert expected_lines == n_lines
|
|
assert expected_perplexities == n_perplexity
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"verbose,evaluate_every,expected_lines,expected_perplexities",
|
|
[
|
|
(False, 1, 0, 0),
|
|
(False, 0, 0, 0),
|
|
(True, 0, 3, 0),
|
|
(True, 1, 3, 3),
|
|
(True, 2, 3, 1),
|
|
],
|
|
)
|
|
def test_verbosity(verbose, evaluate_every, expected_lines, expected_perplexities):
|
|
check_verbosity(verbose, evaluate_every, expected_lines, expected_perplexities)
|
|
|
|
|
|
def test_lda_feature_names_out():
|
|
"""Check feature names out for LatentDirichletAllocation."""
|
|
n_components, X = _build_sparse_mtx()
|
|
lda = LatentDirichletAllocation(n_components=n_components).fit(X)
|
|
|
|
names = lda.get_feature_names_out()
|
|
assert_array_equal(
|
|
[f"latentdirichletallocation{i}" for i in range(n_components)], names
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("learning_method", ("batch", "online"))
|
|
def test_lda_dtype_match(learning_method, global_dtype):
|
|
"""Check data type preservation of fitted attributes."""
|
|
rng = np.random.RandomState(0)
|
|
X = rng.uniform(size=(20, 10)).astype(global_dtype, copy=False)
|
|
|
|
lda = LatentDirichletAllocation(
|
|
n_components=5, random_state=0, learning_method=learning_method
|
|
)
|
|
lda.fit(X)
|
|
assert lda.components_.dtype == global_dtype
|
|
assert lda.exp_dirichlet_component_.dtype == global_dtype
|
|
|
|
|
|
@pytest.mark.parametrize("learning_method", ("batch", "online"))
|
|
def test_lda_numerical_consistency(learning_method, global_random_seed):
|
|
"""Check numerical consistency between np.float32 and np.float64."""
|
|
rng = np.random.RandomState(global_random_seed)
|
|
X64 = rng.uniform(size=(20, 10))
|
|
X32 = X64.astype(np.float32)
|
|
|
|
lda_64 = LatentDirichletAllocation(
|
|
n_components=5, random_state=global_random_seed, learning_method=learning_method
|
|
).fit(X64)
|
|
lda_32 = LatentDirichletAllocation(
|
|
n_components=5, random_state=global_random_seed, learning_method=learning_method
|
|
).fit(X32)
|
|
|
|
assert_allclose(lda_32.components_, lda_64.components_)
|
|
assert_allclose(lda_32.transform(X32), lda_64.transform(X64))
|