105 lines
3.1 KiB
Python
105 lines
3.1 KiB
Python
import itertools
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from numpy.testing import assert_array_almost_equal
|
|
from sklearn.neighbors._ball_tree import BallTree
|
|
from sklearn.utils import check_random_state
|
|
from sklearn.utils.validation import check_array
|
|
from sklearn.utils._testing import _convert_container
|
|
|
|
rng = np.random.RandomState(10)
|
|
V_mahalanobis = rng.rand(3, 3)
|
|
V_mahalanobis = np.dot(V_mahalanobis, V_mahalanobis.T)
|
|
|
|
DIMENSION = 3
|
|
|
|
METRICS = {
|
|
"euclidean": {},
|
|
"manhattan": {},
|
|
"minkowski": dict(p=3),
|
|
"chebyshev": {},
|
|
"seuclidean": dict(V=rng.random_sample(DIMENSION)),
|
|
"wminkowski": dict(p=3, w=rng.random_sample(DIMENSION)),
|
|
"mahalanobis": dict(V=V_mahalanobis),
|
|
}
|
|
|
|
DISCRETE_METRICS = ["hamming", "canberra", "braycurtis"]
|
|
|
|
BOOLEAN_METRICS = [
|
|
"matching",
|
|
"jaccard",
|
|
"dice",
|
|
"kulsinski",
|
|
"rogerstanimoto",
|
|
"russellrao",
|
|
"sokalmichener",
|
|
"sokalsneath",
|
|
]
|
|
|
|
|
|
def brute_force_neighbors(X, Y, k, metric, **kwargs):
|
|
from sklearn.metrics import DistanceMetric
|
|
|
|
X, Y = check_array(X), check_array(Y)
|
|
D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X)
|
|
ind = np.argsort(D, axis=1)[:, :k]
|
|
dist = D[np.arange(Y.shape[0])[:, None], ind]
|
|
return dist, ind
|
|
|
|
|
|
@pytest.mark.parametrize("metric", itertools.chain(BOOLEAN_METRICS, DISCRETE_METRICS))
|
|
@pytest.mark.parametrize("array_type", ["list", "array"])
|
|
def test_ball_tree_query_metrics(metric, array_type):
|
|
rng = check_random_state(0)
|
|
if metric in BOOLEAN_METRICS:
|
|
X = rng.random_sample((40, 10)).round(0)
|
|
Y = rng.random_sample((10, 10)).round(0)
|
|
elif metric in DISCRETE_METRICS:
|
|
X = (4 * rng.random_sample((40, 10))).round(0)
|
|
Y = (4 * rng.random_sample((10, 10))).round(0)
|
|
X = _convert_container(X, array_type)
|
|
Y = _convert_container(Y, array_type)
|
|
|
|
k = 5
|
|
|
|
bt = BallTree(X, leaf_size=1, metric=metric)
|
|
dist1, ind1 = bt.query(Y, k)
|
|
dist2, ind2 = brute_force_neighbors(X, Y, k, metric)
|
|
assert_array_almost_equal(dist1, dist2)
|
|
|
|
|
|
def test_query_haversine():
|
|
rng = check_random_state(0)
|
|
X = 2 * np.pi * rng.random_sample((40, 2))
|
|
bt = BallTree(X, leaf_size=1, metric="haversine")
|
|
dist1, ind1 = bt.query(X, k=5)
|
|
dist2, ind2 = brute_force_neighbors(X, X, k=5, metric="haversine")
|
|
|
|
assert_array_almost_equal(dist1, dist2)
|
|
assert_array_almost_equal(ind1, ind2)
|
|
|
|
|
|
def test_array_object_type():
|
|
"""Check that we do not accept object dtype array."""
|
|
X = np.array([(1, 2, 3), (2, 5), (5, 5, 1, 2)], dtype=object)
|
|
with pytest.raises(ValueError, match="setting an array element with a sequence"):
|
|
BallTree(X)
|
|
|
|
|
|
def test_bad_pyfunc_metric():
|
|
def wrong_returned_value(x, y):
|
|
return "1"
|
|
|
|
def one_arg_func(x):
|
|
return 1.0 # pragma: no cover
|
|
|
|
X = np.ones((5, 2))
|
|
msg = "Custom distance function must accept two vectors and return a float."
|
|
with pytest.raises(TypeError, match=msg):
|
|
BallTree(X, metric=wrong_returned_value)
|
|
|
|
msg = "takes 1 positional argument but 2 were given"
|
|
with pytest.raises(TypeError, match=msg):
|
|
BallTree(X, metric=one_arg_func)
|