4381 lines
151 KiB
Python
4381 lines
151 KiB
Python
import warnings
|
|
import pickle
|
|
import re
|
|
from copy import deepcopy
|
|
from functools import partial, wraps
|
|
from inspect import signature
|
|
from numbers import Real
|
|
|
|
import numpy as np
|
|
from scipy import sparse
|
|
from scipy.stats import rankdata
|
|
import joblib
|
|
|
|
from . import IS_PYPY
|
|
from .. import config_context
|
|
from ._param_validation import Interval
|
|
from ._testing import _get_args
|
|
from ._testing import assert_raise_message
|
|
from ._testing import assert_array_equal
|
|
from ._testing import assert_array_almost_equal
|
|
from ._testing import assert_allclose
|
|
from ._testing import assert_allclose_dense_sparse
|
|
from ._testing import assert_array_less
|
|
from ._testing import set_random_state
|
|
from ._testing import SkipTest
|
|
from ._testing import ignore_warnings
|
|
from ._testing import create_memmap_backed_data
|
|
from ._testing import raises
|
|
from . import is_scalar_nan
|
|
|
|
from ..linear_model import LinearRegression
|
|
from ..linear_model import LogisticRegression
|
|
from ..linear_model import RANSACRegressor
|
|
from ..linear_model import Ridge
|
|
from ..linear_model import SGDRegressor
|
|
|
|
from ..base import (
|
|
clone,
|
|
ClusterMixin,
|
|
is_classifier,
|
|
is_regressor,
|
|
is_outlier_detector,
|
|
RegressorMixin,
|
|
)
|
|
|
|
from ..metrics import accuracy_score, adjusted_rand_score, f1_score
|
|
from ..random_projection import BaseRandomProjection
|
|
from ..feature_selection import SelectKBest
|
|
from ..feature_selection import SelectFromModel
|
|
from ..pipeline import make_pipeline
|
|
from ..exceptions import DataConversionWarning
|
|
from ..exceptions import NotFittedError
|
|
from ..exceptions import SkipTestWarning
|
|
from ..model_selection import train_test_split
|
|
from ..model_selection import ShuffleSplit
|
|
from ..model_selection._validation import _safe_split
|
|
from ..metrics.pairwise import rbf_kernel, linear_kernel, pairwise_distances
|
|
from ..utils.fixes import sp_version
|
|
from ..utils.fixes import parse_version
|
|
from ..utils.validation import check_is_fitted
|
|
from ..utils._param_validation import make_constraint
|
|
from ..utils._param_validation import generate_invalid_param_val
|
|
from ..utils._param_validation import InvalidParameterError
|
|
|
|
from . import shuffle
|
|
from ._tags import (
|
|
_DEFAULT_TAGS,
|
|
_safe_tags,
|
|
)
|
|
from .validation import has_fit_parameter, _num_samples
|
|
from ..preprocessing import StandardScaler
|
|
from ..preprocessing import scale
|
|
from ..datasets import (
|
|
load_iris,
|
|
make_blobs,
|
|
make_multilabel_classification,
|
|
make_regression,
|
|
)
|
|
|
|
REGRESSION_DATASET = None
|
|
CROSS_DECOMPOSITION = ["PLSCanonical", "PLSRegression", "CCA", "PLSSVD"]
|
|
|
|
|
|
def _yield_checks(estimator):
|
|
name = estimator.__class__.__name__
|
|
tags = _safe_tags(estimator)
|
|
|
|
yield check_no_attributes_set_in_init
|
|
yield check_estimators_dtypes
|
|
yield check_fit_score_takes_y
|
|
if has_fit_parameter(estimator, "sample_weight"):
|
|
yield check_sample_weights_pandas_series
|
|
yield check_sample_weights_not_an_array
|
|
yield check_sample_weights_list
|
|
if not tags["pairwise"]:
|
|
# We skip pairwise because the data is not pairwise
|
|
yield check_sample_weights_shape
|
|
yield check_sample_weights_not_overwritten
|
|
yield partial(check_sample_weights_invariance, kind="ones")
|
|
yield partial(check_sample_weights_invariance, kind="zeros")
|
|
yield check_estimators_fit_returns_self
|
|
yield partial(check_estimators_fit_returns_self, readonly_memmap=True)
|
|
|
|
# Check that all estimator yield informative messages when
|
|
# trained on empty datasets
|
|
if not tags["no_validation"]:
|
|
yield check_complex_data
|
|
yield check_dtype_object
|
|
yield check_estimators_empty_data_messages
|
|
|
|
if name not in CROSS_DECOMPOSITION:
|
|
# cross-decomposition's "transform" returns X and Y
|
|
yield check_pipeline_consistency
|
|
|
|
if not tags["allow_nan"] and not tags["no_validation"]:
|
|
# Test that all estimators check their input for NaN's and infs
|
|
yield check_estimators_nan_inf
|
|
|
|
if tags["pairwise"]:
|
|
# Check that pairwise estimator throws error on non-square input
|
|
yield check_nonsquare_error
|
|
|
|
yield check_estimators_overwrite_params
|
|
if hasattr(estimator, "sparsify"):
|
|
yield check_sparsify_coefficients
|
|
|
|
yield check_estimator_sparse_data
|
|
|
|
# Test that estimators can be pickled, and once pickled
|
|
# give the same answer as before.
|
|
yield check_estimators_pickle
|
|
|
|
yield check_estimator_get_tags_default_keys
|
|
|
|
|
|
def _yield_classifier_checks(classifier):
|
|
tags = _safe_tags(classifier)
|
|
|
|
# test classifiers can handle non-array data and pandas objects
|
|
yield check_classifier_data_not_an_array
|
|
# test classifiers trained on a single label always return this label
|
|
yield check_classifiers_one_label
|
|
yield check_classifiers_one_label_sample_weights
|
|
yield check_classifiers_classes
|
|
yield check_estimators_partial_fit_n_features
|
|
if tags["multioutput"]:
|
|
yield check_classifier_multioutput
|
|
# basic consistency testing
|
|
yield check_classifiers_train
|
|
yield partial(check_classifiers_train, readonly_memmap=True)
|
|
yield partial(check_classifiers_train, readonly_memmap=True, X_dtype="float32")
|
|
yield check_classifiers_regression_target
|
|
if tags["multilabel"]:
|
|
yield check_classifiers_multilabel_representation_invariance
|
|
yield check_classifiers_multilabel_output_format_predict
|
|
yield check_classifiers_multilabel_output_format_predict_proba
|
|
yield check_classifiers_multilabel_output_format_decision_function
|
|
if not tags["no_validation"]:
|
|
yield check_supervised_y_no_nan
|
|
if not tags["multioutput_only"]:
|
|
yield check_supervised_y_2d
|
|
if tags["requires_fit"]:
|
|
yield check_estimators_unfitted
|
|
if "class_weight" in classifier.get_params().keys():
|
|
yield check_class_weight_classifiers
|
|
|
|
yield check_non_transformer_estimators_n_iter
|
|
# test if predict_proba is a monotonic transformation of decision_function
|
|
yield check_decision_proba_consistency
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_supervised_y_no_nan(name, estimator_orig):
|
|
# Checks that the Estimator targets are not NaN.
|
|
estimator = clone(estimator_orig)
|
|
rng = np.random.RandomState(888)
|
|
X = rng.standard_normal(size=(10, 5))
|
|
|
|
for value in [np.nan, np.inf]:
|
|
y = np.full(10, value)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
module_name = estimator.__module__
|
|
if module_name.startswith("sklearn.") and not (
|
|
"test_" in module_name or module_name.endswith("_testing")
|
|
):
|
|
# In scikit-learn we want the error message to mention the input
|
|
# name and be specific about the kind of unexpected value.
|
|
if np.isinf(value):
|
|
match = (
|
|
r"Input (y|Y) contains infinity or a value too large for"
|
|
r" dtype\('float64'\)."
|
|
)
|
|
else:
|
|
match = r"Input (y|Y) contains NaN."
|
|
else:
|
|
# Do not impose a particular error message to third-party libraries.
|
|
match = None
|
|
err_msg = (
|
|
f"Estimator {name} should have raised error on fitting array y with inf"
|
|
" value."
|
|
)
|
|
with raises(ValueError, match=match, err_msg=err_msg):
|
|
estimator.fit(X, y)
|
|
|
|
|
|
def _yield_regressor_checks(regressor):
|
|
tags = _safe_tags(regressor)
|
|
# TODO: test with intercept
|
|
# TODO: test with multiple responses
|
|
# basic testing
|
|
yield check_regressors_train
|
|
yield partial(check_regressors_train, readonly_memmap=True)
|
|
yield partial(check_regressors_train, readonly_memmap=True, X_dtype="float32")
|
|
yield check_regressor_data_not_an_array
|
|
yield check_estimators_partial_fit_n_features
|
|
if tags["multioutput"]:
|
|
yield check_regressor_multioutput
|
|
yield check_regressors_no_decision_function
|
|
if not tags["no_validation"] and not tags["multioutput_only"]:
|
|
yield check_supervised_y_2d
|
|
yield check_supervised_y_no_nan
|
|
name = regressor.__class__.__name__
|
|
if name != "CCA":
|
|
# check that the regressor handles int input
|
|
yield check_regressors_int
|
|
if tags["requires_fit"]:
|
|
yield check_estimators_unfitted
|
|
yield check_non_transformer_estimators_n_iter
|
|
|
|
|
|
def _yield_transformer_checks(transformer):
|
|
tags = _safe_tags(transformer)
|
|
# All transformers should either deal with sparse data or raise an
|
|
# exception with type TypeError and an intelligible error message
|
|
if not tags["no_validation"]:
|
|
yield check_transformer_data_not_an_array
|
|
# these don't actually fit the data, so don't raise errors
|
|
yield check_transformer_general
|
|
if tags["preserves_dtype"]:
|
|
yield check_transformer_preserve_dtypes
|
|
yield partial(check_transformer_general, readonly_memmap=True)
|
|
if not _safe_tags(transformer, key="stateless"):
|
|
yield check_transformers_unfitted
|
|
# Dependent on external solvers and hence accessing the iter
|
|
# param is non-trivial.
|
|
external_solver = [
|
|
"Isomap",
|
|
"KernelPCA",
|
|
"LocallyLinearEmbedding",
|
|
"RandomizedLasso",
|
|
"LogisticRegressionCV",
|
|
"BisectingKMeans",
|
|
]
|
|
|
|
name = transformer.__class__.__name__
|
|
if name not in external_solver:
|
|
yield check_transformer_n_iter
|
|
|
|
|
|
def _yield_clustering_checks(clusterer):
|
|
yield check_clusterer_compute_labels_predict
|
|
name = clusterer.__class__.__name__
|
|
if name not in ("WardAgglomeration", "FeatureAgglomeration"):
|
|
# this is clustering on the features
|
|
# let's not test that here.
|
|
yield check_clustering
|
|
yield partial(check_clustering, readonly_memmap=True)
|
|
yield check_estimators_partial_fit_n_features
|
|
if not hasattr(clusterer, "transform"):
|
|
yield check_non_transformer_estimators_n_iter
|
|
|
|
|
|
def _yield_outliers_checks(estimator):
|
|
|
|
# checks for the contamination parameter
|
|
if hasattr(estimator, "contamination"):
|
|
yield check_outlier_contamination
|
|
|
|
# checks for outlier detectors that have a fit_predict method
|
|
if hasattr(estimator, "fit_predict"):
|
|
yield check_outliers_fit_predict
|
|
|
|
# checks for estimators that can be used on a test set
|
|
if hasattr(estimator, "predict"):
|
|
yield check_outliers_train
|
|
yield partial(check_outliers_train, readonly_memmap=True)
|
|
# test outlier detectors can handle non-array data
|
|
yield check_classifier_data_not_an_array
|
|
# test if NotFittedError is raised
|
|
if _safe_tags(estimator, key="requires_fit"):
|
|
yield check_estimators_unfitted
|
|
yield check_non_transformer_estimators_n_iter
|
|
|
|
|
|
def _yield_all_checks(estimator):
|
|
name = estimator.__class__.__name__
|
|
tags = _safe_tags(estimator)
|
|
if "2darray" not in tags["X_types"]:
|
|
warnings.warn(
|
|
"Can't test estimator {} which requires input of type {}".format(
|
|
name, tags["X_types"]
|
|
),
|
|
SkipTestWarning,
|
|
)
|
|
return
|
|
if tags["_skip_test"]:
|
|
warnings.warn(
|
|
"Explicit SKIP via _skip_test tag for estimator {}.".format(name),
|
|
SkipTestWarning,
|
|
)
|
|
return
|
|
|
|
for check in _yield_checks(estimator):
|
|
yield check
|
|
if is_classifier(estimator):
|
|
for check in _yield_classifier_checks(estimator):
|
|
yield check
|
|
if is_regressor(estimator):
|
|
for check in _yield_regressor_checks(estimator):
|
|
yield check
|
|
if hasattr(estimator, "transform"):
|
|
for check in _yield_transformer_checks(estimator):
|
|
yield check
|
|
if isinstance(estimator, ClusterMixin):
|
|
for check in _yield_clustering_checks(estimator):
|
|
yield check
|
|
if is_outlier_detector(estimator):
|
|
for check in _yield_outliers_checks(estimator):
|
|
yield check
|
|
yield check_parameters_default_constructible
|
|
if not tags["non_deterministic"]:
|
|
yield check_methods_sample_order_invariance
|
|
yield check_methods_subset_invariance
|
|
yield check_fit2d_1sample
|
|
yield check_fit2d_1feature
|
|
yield check_get_params_invariance
|
|
yield check_set_params
|
|
yield check_dict_unchanged
|
|
yield check_dont_overwrite_parameters
|
|
yield check_fit_idempotent
|
|
yield check_fit_check_is_fitted
|
|
if not tags["no_validation"]:
|
|
yield check_n_features_in
|
|
yield check_fit1d
|
|
yield check_fit2d_predict1d
|
|
if tags["requires_y"]:
|
|
yield check_requires_y_none
|
|
if tags["requires_positive_X"]:
|
|
yield check_fit_non_negative
|
|
|
|
|
|
def _get_check_estimator_ids(obj):
|
|
"""Create pytest ids for checks.
|
|
|
|
When `obj` is an estimator, this returns the pprint version of the
|
|
estimator (with `print_changed_only=True`). When `obj` is a function, the
|
|
name of the function is returned with its keyword arguments.
|
|
|
|
`_get_check_estimator_ids` is designed to be used as the `id` in
|
|
`pytest.mark.parametrize` where `check_estimator(..., generate_only=True)`
|
|
is yielding estimators and checks.
|
|
|
|
Parameters
|
|
----------
|
|
obj : estimator or function
|
|
Items generated by `check_estimator`.
|
|
|
|
Returns
|
|
-------
|
|
id : str or None
|
|
|
|
See Also
|
|
--------
|
|
check_estimator
|
|
"""
|
|
if callable(obj):
|
|
if not isinstance(obj, partial):
|
|
return obj.__name__
|
|
|
|
if not obj.keywords:
|
|
return obj.func.__name__
|
|
|
|
kwstring = ",".join(["{}={}".format(k, v) for k, v in obj.keywords.items()])
|
|
return "{}({})".format(obj.func.__name__, kwstring)
|
|
if hasattr(obj, "get_params"):
|
|
with config_context(print_changed_only=True):
|
|
return re.sub(r"\s", "", str(obj))
|
|
|
|
|
|
def _construct_instance(Estimator):
|
|
"""Construct Estimator instance if possible."""
|
|
required_parameters = getattr(Estimator, "_required_parameters", [])
|
|
if len(required_parameters):
|
|
if required_parameters in (["estimator"], ["base_estimator"]):
|
|
# `RANSACRegressor` will raise an error with any model other
|
|
# than `LinearRegression` if we don't fix `min_samples` parameter.
|
|
# For common test, we can enforce using `LinearRegression` that
|
|
# is the default estimator in `RANSACRegressor` instead of `Ridge`.
|
|
if issubclass(Estimator, RANSACRegressor):
|
|
estimator = Estimator(LinearRegression())
|
|
elif issubclass(Estimator, RegressorMixin):
|
|
estimator = Estimator(Ridge())
|
|
elif issubclass(Estimator, SelectFromModel):
|
|
# Increases coverage because SGDRegressor has partial_fit
|
|
estimator = Estimator(SGDRegressor(random_state=0))
|
|
else:
|
|
estimator = Estimator(LogisticRegression(C=1))
|
|
elif required_parameters in (["estimators"],):
|
|
# Heterogeneous ensemble classes (i.e. stacking, voting)
|
|
if issubclass(Estimator, RegressorMixin):
|
|
estimator = Estimator(
|
|
estimators=[("est1", Ridge(alpha=0.1)), ("est2", Ridge(alpha=1))]
|
|
)
|
|
else:
|
|
estimator = Estimator(
|
|
estimators=[
|
|
("est1", LogisticRegression(C=0.1)),
|
|
("est2", LogisticRegression(C=1)),
|
|
]
|
|
)
|
|
else:
|
|
msg = (
|
|
f"Can't instantiate estimator {Estimator.__name__} "
|
|
f"parameters {required_parameters}"
|
|
)
|
|
# raise additional warning to be shown by pytest
|
|
warnings.warn(msg, SkipTestWarning)
|
|
raise SkipTest(msg)
|
|
else:
|
|
estimator = Estimator()
|
|
return estimator
|
|
|
|
|
|
def _maybe_mark_xfail(estimator, check, pytest):
|
|
# Mark (estimator, check) pairs as XFAIL if needed (see conditions in
|
|
# _should_be_skipped_or_marked())
|
|
# This is similar to _maybe_skip(), but this one is used by
|
|
# @parametrize_with_checks() instead of check_estimator()
|
|
|
|
should_be_marked, reason = _should_be_skipped_or_marked(estimator, check)
|
|
if not should_be_marked:
|
|
return estimator, check
|
|
else:
|
|
return pytest.param(estimator, check, marks=pytest.mark.xfail(reason=reason))
|
|
|
|
|
|
def _maybe_skip(estimator, check):
|
|
# Wrap a check so that it's skipped if needed (see conditions in
|
|
# _should_be_skipped_or_marked())
|
|
# This is similar to _maybe_mark_xfail(), but this one is used by
|
|
# check_estimator() instead of @parametrize_with_checks which requires
|
|
# pytest
|
|
should_be_skipped, reason = _should_be_skipped_or_marked(estimator, check)
|
|
if not should_be_skipped:
|
|
return check
|
|
|
|
check_name = check.func.__name__ if isinstance(check, partial) else check.__name__
|
|
|
|
@wraps(check)
|
|
def wrapped(*args, **kwargs):
|
|
raise SkipTest(
|
|
f"Skipping {check_name} for {estimator.__class__.__name__}: {reason}"
|
|
)
|
|
|
|
return wrapped
|
|
|
|
|
|
def _should_be_skipped_or_marked(estimator, check):
|
|
# Return whether a check should be skipped (when using check_estimator())
|
|
# or marked as XFAIL (when using @parametrize_with_checks()), along with a
|
|
# reason.
|
|
# Currently, a check should be skipped or marked if
|
|
# the check is in the _xfail_checks tag of the estimator
|
|
|
|
check_name = check.func.__name__ if isinstance(check, partial) else check.__name__
|
|
|
|
xfail_checks = _safe_tags(estimator, key="_xfail_checks") or {}
|
|
if check_name in xfail_checks:
|
|
return True, xfail_checks[check_name]
|
|
|
|
return False, "placeholder reason that will never be used"
|
|
|
|
|
|
def parametrize_with_checks(estimators):
|
|
"""Pytest specific decorator for parametrizing estimator checks.
|
|
|
|
The `id` of each check is set to be a pprint version of the estimator
|
|
and the name of the check with its keyword arguments.
|
|
This allows to use `pytest -k` to specify which tests to run::
|
|
|
|
pytest test_check_estimators.py -k check_estimators_fit_returns_self
|
|
|
|
Parameters
|
|
----------
|
|
estimators : list of estimators instances
|
|
Estimators to generated checks for.
|
|
|
|
.. versionchanged:: 0.24
|
|
Passing a class was deprecated in version 0.23, and support for
|
|
classes was removed in 0.24. Pass an instance instead.
|
|
|
|
.. versionadded:: 0.24
|
|
|
|
Returns
|
|
-------
|
|
decorator : `pytest.mark.parametrize`
|
|
|
|
See Also
|
|
--------
|
|
check_estimator : Check if estimator adheres to scikit-learn conventions.
|
|
|
|
Examples
|
|
--------
|
|
>>> from sklearn.utils.estimator_checks import parametrize_with_checks
|
|
>>> from sklearn.linear_model import LogisticRegression
|
|
>>> from sklearn.tree import DecisionTreeRegressor
|
|
|
|
>>> @parametrize_with_checks([LogisticRegression(),
|
|
... DecisionTreeRegressor()])
|
|
... def test_sklearn_compatible_estimator(estimator, check):
|
|
... check(estimator)
|
|
|
|
"""
|
|
import pytest
|
|
|
|
if any(isinstance(est, type) for est in estimators):
|
|
msg = (
|
|
"Passing a class was deprecated in version 0.23 "
|
|
"and isn't supported anymore from 0.24."
|
|
"Please pass an instance instead."
|
|
)
|
|
raise TypeError(msg)
|
|
|
|
def checks_generator():
|
|
for estimator in estimators:
|
|
name = type(estimator).__name__
|
|
for check in _yield_all_checks(estimator):
|
|
check = partial(check, name)
|
|
yield _maybe_mark_xfail(estimator, check, pytest)
|
|
|
|
return pytest.mark.parametrize(
|
|
"estimator, check", checks_generator(), ids=_get_check_estimator_ids
|
|
)
|
|
|
|
|
|
def check_estimator(estimator=None, generate_only=False, Estimator="deprecated"):
|
|
"""Check if estimator adheres to scikit-learn conventions.
|
|
|
|
This function will run an extensive test-suite for input validation,
|
|
shapes, etc, making sure that the estimator complies with `scikit-learn`
|
|
conventions as detailed in :ref:`rolling_your_own_estimator`.
|
|
Additional tests for classifiers, regressors, clustering or transformers
|
|
will be run if the Estimator class inherits from the corresponding mixin
|
|
from sklearn.base.
|
|
|
|
Setting `generate_only=True` returns a generator that yields (estimator,
|
|
check) tuples where the check can be called independently from each
|
|
other, i.e. `check(estimator)`. This allows all checks to be run
|
|
independently and report the checks that are failing.
|
|
|
|
scikit-learn provides a pytest specific decorator,
|
|
:func:`~sklearn.utils.parametrize_with_checks`, making it easier to test
|
|
multiple estimators.
|
|
|
|
Parameters
|
|
----------
|
|
estimator : estimator object
|
|
Estimator instance to check.
|
|
|
|
.. versionadded:: 1.1
|
|
Passing a class was deprecated in version 0.23, and support for
|
|
classes was removed in 0.24.
|
|
|
|
generate_only : bool, default=False
|
|
When `False`, checks are evaluated when `check_estimator` is called.
|
|
When `True`, `check_estimator` returns a generator that yields
|
|
(estimator, check) tuples. The check is run by calling
|
|
`check(estimator)`.
|
|
|
|
.. versionadded:: 0.22
|
|
|
|
Estimator : estimator object
|
|
Estimator instance to check.
|
|
|
|
.. deprecated:: 1.1
|
|
``Estimator`` was deprecated in favor of ``estimator`` in version 1.1
|
|
and will be removed in version 1.3.
|
|
|
|
Returns
|
|
-------
|
|
checks_generator : generator
|
|
Generator that yields (estimator, check) tuples. Returned when
|
|
`generate_only=True`.
|
|
|
|
See Also
|
|
--------
|
|
parametrize_with_checks : Pytest specific decorator for parametrizing estimator
|
|
checks.
|
|
"""
|
|
|
|
if estimator is None and Estimator == "deprecated":
|
|
msg = "Either estimator or Estimator should be passed to check_estimator."
|
|
raise ValueError(msg)
|
|
|
|
if Estimator != "deprecated":
|
|
msg = (
|
|
"'Estimator' was deprecated in favor of 'estimator' in version 1.1 "
|
|
"and will be removed in version 1.3."
|
|
)
|
|
warnings.warn(msg, FutureWarning)
|
|
estimator = Estimator
|
|
if isinstance(estimator, type):
|
|
msg = (
|
|
"Passing a class was deprecated in version 0.23 "
|
|
"and isn't supported anymore from 0.24."
|
|
"Please pass an instance instead."
|
|
)
|
|
raise TypeError(msg)
|
|
|
|
name = type(estimator).__name__
|
|
|
|
def checks_generator():
|
|
for check in _yield_all_checks(estimator):
|
|
check = _maybe_skip(estimator, check)
|
|
yield estimator, partial(check, name)
|
|
|
|
if generate_only:
|
|
return checks_generator()
|
|
|
|
for estimator, check in checks_generator():
|
|
try:
|
|
check(estimator)
|
|
except SkipTest as exception:
|
|
# SkipTest is thrown when pandas can't be imported, or by checks
|
|
# that are in the xfail_checks tag
|
|
warnings.warn(str(exception), SkipTestWarning)
|
|
|
|
|
|
def _regression_dataset():
|
|
global REGRESSION_DATASET
|
|
if REGRESSION_DATASET is None:
|
|
X, y = make_regression(
|
|
n_samples=200,
|
|
n_features=10,
|
|
n_informative=1,
|
|
bias=5.0,
|
|
noise=20,
|
|
random_state=42,
|
|
)
|
|
X = StandardScaler().fit_transform(X)
|
|
REGRESSION_DATASET = X, y
|
|
return REGRESSION_DATASET
|
|
|
|
|
|
def _set_checking_parameters(estimator):
|
|
# set parameters to speed up some estimators and
|
|
# avoid deprecated behaviour
|
|
params = estimator.get_params()
|
|
name = estimator.__class__.__name__
|
|
if name == "TSNE":
|
|
estimator.set_params(perplexity=2)
|
|
if "n_iter" in params and name != "TSNE":
|
|
estimator.set_params(n_iter=5)
|
|
if "max_iter" in params:
|
|
if estimator.max_iter is not None:
|
|
estimator.set_params(max_iter=min(5, estimator.max_iter))
|
|
# LinearSVR, LinearSVC
|
|
if name in ["LinearSVR", "LinearSVC"]:
|
|
estimator.set_params(max_iter=20)
|
|
# NMF
|
|
if name == "NMF":
|
|
estimator.set_params(max_iter=500)
|
|
# MiniBatchNMF
|
|
if estimator.__class__.__name__ == "MiniBatchNMF":
|
|
estimator.set_params(max_iter=20, fresh_restarts=True)
|
|
# MLP
|
|
if name in ["MLPClassifier", "MLPRegressor"]:
|
|
estimator.set_params(max_iter=100)
|
|
# MiniBatchDictionaryLearning
|
|
if name == "MiniBatchDictionaryLearning":
|
|
estimator.set_params(max_iter=5)
|
|
|
|
if "n_resampling" in params:
|
|
# randomized lasso
|
|
estimator.set_params(n_resampling=5)
|
|
if "n_estimators" in params:
|
|
estimator.set_params(n_estimators=min(5, estimator.n_estimators))
|
|
if "max_trials" in params:
|
|
# RANSAC
|
|
estimator.set_params(max_trials=10)
|
|
if "n_init" in params:
|
|
# K-Means
|
|
estimator.set_params(n_init=2)
|
|
if "batch_size" in params and not name.startswith("MLP"):
|
|
estimator.set_params(batch_size=10)
|
|
|
|
if name == "MeanShift":
|
|
# In the case of check_fit2d_1sample, bandwidth is set to None and
|
|
# is thus estimated. De facto it is 0.0 as a single sample is provided
|
|
# and this makes the test fails. Hence we give it a placeholder value.
|
|
estimator.set_params(bandwidth=1.0)
|
|
|
|
if name == "TruncatedSVD":
|
|
# TruncatedSVD doesn't run with n_components = n_features
|
|
# This is ugly :-/
|
|
estimator.n_components = 1
|
|
|
|
if name == "LassoLarsIC":
|
|
# Noise variance estimation does not work when `n_samples < n_features`.
|
|
# We need to provide the noise variance explicitly.
|
|
estimator.set_params(noise_variance=1.0)
|
|
|
|
if hasattr(estimator, "n_clusters"):
|
|
estimator.n_clusters = min(estimator.n_clusters, 2)
|
|
|
|
if hasattr(estimator, "n_best"):
|
|
estimator.n_best = 1
|
|
|
|
if name == "SelectFdr":
|
|
# be tolerant of noisy datasets (not actually speed)
|
|
estimator.set_params(alpha=0.5)
|
|
|
|
if name == "TheilSenRegressor":
|
|
estimator.max_subpopulation = 100
|
|
|
|
if isinstance(estimator, BaseRandomProjection):
|
|
# Due to the jl lemma and often very few samples, the number
|
|
# of components of the random matrix projection will be probably
|
|
# greater than the number of features.
|
|
# So we impose a smaller number (avoid "auto" mode)
|
|
estimator.set_params(n_components=2)
|
|
|
|
if isinstance(estimator, SelectKBest):
|
|
# SelectKBest has a default of k=10
|
|
# which is more feature than we have in most case.
|
|
estimator.set_params(k=1)
|
|
|
|
if name in ("HistGradientBoostingClassifier", "HistGradientBoostingRegressor"):
|
|
# The default min_samples_leaf (20) isn't appropriate for small
|
|
# datasets (only very shallow trees are built) that the checks use.
|
|
estimator.set_params(min_samples_leaf=5)
|
|
|
|
if name == "DummyClassifier":
|
|
# the default strategy prior would output constant predictions and fail
|
|
# for check_classifiers_predictions
|
|
estimator.set_params(strategy="stratified")
|
|
|
|
# Speed-up by reducing the number of CV or splits for CV estimators
|
|
loo_cv = ["RidgeCV", "RidgeClassifierCV"]
|
|
if name not in loo_cv and hasattr(estimator, "cv"):
|
|
estimator.set_params(cv=3)
|
|
if hasattr(estimator, "n_splits"):
|
|
estimator.set_params(n_splits=3)
|
|
|
|
if name == "OneHotEncoder":
|
|
estimator.set_params(handle_unknown="ignore")
|
|
|
|
if name == "QuantileRegressor":
|
|
# Avoid warning due to Scipy deprecating interior-point solver
|
|
solver = "highs" if sp_version >= parse_version("1.6.0") else "interior-point"
|
|
estimator.set_params(solver=solver)
|
|
|
|
if name in CROSS_DECOMPOSITION:
|
|
estimator.set_params(n_components=1)
|
|
|
|
# Default "auto" parameter can lead to different ordering of eigenvalues on
|
|
# windows: #24105
|
|
if name == "SpectralEmbedding":
|
|
estimator.set_params(eigen_tol=1e-5)
|
|
|
|
|
|
class _NotAnArray:
|
|
"""An object that is convertible to an array.
|
|
|
|
Parameters
|
|
----------
|
|
data : array-like
|
|
The data.
|
|
"""
|
|
|
|
def __init__(self, data):
|
|
self.data = np.asarray(data)
|
|
|
|
def __array__(self, dtype=None):
|
|
return self.data
|
|
|
|
def __array_function__(self, func, types, args, kwargs):
|
|
if func.__name__ == "may_share_memory":
|
|
return True
|
|
raise TypeError("Don't want to call array_function {}!".format(func.__name__))
|
|
|
|
|
|
def _is_pairwise_metric(estimator):
|
|
"""Returns True if estimator accepts pairwise metric.
|
|
|
|
Parameters
|
|
----------
|
|
estimator : object
|
|
Estimator object to test.
|
|
|
|
Returns
|
|
-------
|
|
out : bool
|
|
True if _pairwise is set to True and False otherwise.
|
|
"""
|
|
metric = getattr(estimator, "metric", None)
|
|
|
|
return bool(metric == "precomputed")
|
|
|
|
|
|
def _generate_sparse_matrix(X_csr):
|
|
"""Generate sparse matrices with {32,64}bit indices of diverse format.
|
|
|
|
Parameters
|
|
----------
|
|
X_csr: CSR Matrix
|
|
Input matrix in CSR format.
|
|
|
|
Returns
|
|
-------
|
|
out: iter(Matrices)
|
|
In format['dok', 'lil', 'dia', 'bsr', 'csr', 'csc', 'coo',
|
|
'coo_64', 'csc_64', 'csr_64']
|
|
"""
|
|
|
|
assert X_csr.format == "csr"
|
|
yield "csr", X_csr.copy()
|
|
for sparse_format in ["dok", "lil", "dia", "bsr", "csc", "coo"]:
|
|
yield sparse_format, X_csr.asformat(sparse_format)
|
|
|
|
# Generate large indices matrix only if its supported by scipy
|
|
X_coo = X_csr.asformat("coo")
|
|
X_coo.row = X_coo.row.astype("int64")
|
|
X_coo.col = X_coo.col.astype("int64")
|
|
yield "coo_64", X_coo
|
|
|
|
for sparse_format in ["csc", "csr"]:
|
|
X = X_csr.asformat(sparse_format)
|
|
X.indices = X.indices.astype("int64")
|
|
X.indptr = X.indptr.astype("int64")
|
|
yield sparse_format + "_64", X
|
|
|
|
|
|
def check_estimator_sparse_data(name, estimator_orig):
|
|
rng = np.random.RandomState(0)
|
|
X = rng.uniform(size=(40, 3))
|
|
X[X < 0.8] = 0
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
X_csr = sparse.csr_matrix(X)
|
|
y = (4 * rng.uniform(size=40)).astype(int)
|
|
# catch deprecation warnings
|
|
with ignore_warnings(category=FutureWarning):
|
|
estimator = clone(estimator_orig)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
tags = _safe_tags(estimator_orig)
|
|
for matrix_format, X in _generate_sparse_matrix(X_csr):
|
|
# catch deprecation warnings
|
|
with ignore_warnings(category=FutureWarning):
|
|
estimator = clone(estimator_orig)
|
|
if name in ["Scaler", "StandardScaler"]:
|
|
estimator.set_params(with_mean=False)
|
|
# fit and predict
|
|
if "64" in matrix_format:
|
|
err_msg = (
|
|
f"Estimator {name} doesn't seem to support {matrix_format} "
|
|
"matrix, and is not failing gracefully, e.g. by using "
|
|
"check_array(X, accept_large_sparse=False)"
|
|
)
|
|
else:
|
|
err_msg = (
|
|
f"Estimator {name} doesn't seem to fail gracefully on sparse "
|
|
"data: error message should state explicitly that sparse "
|
|
"input is not supported if this is not the case."
|
|
)
|
|
with raises(
|
|
(TypeError, ValueError),
|
|
match=["sparse", "Sparse"],
|
|
may_pass=True,
|
|
err_msg=err_msg,
|
|
):
|
|
with ignore_warnings(category=FutureWarning):
|
|
estimator.fit(X, y)
|
|
if hasattr(estimator, "predict"):
|
|
pred = estimator.predict(X)
|
|
if tags["multioutput_only"]:
|
|
assert pred.shape == (X.shape[0], 1)
|
|
else:
|
|
assert pred.shape == (X.shape[0],)
|
|
if hasattr(estimator, "predict_proba"):
|
|
probs = estimator.predict_proba(X)
|
|
if tags["binary_only"]:
|
|
expected_probs_shape = (X.shape[0], 2)
|
|
else:
|
|
expected_probs_shape = (X.shape[0], 4)
|
|
assert probs.shape == expected_probs_shape
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_sample_weights_pandas_series(name, estimator_orig):
|
|
# check that estimators will accept a 'sample_weight' parameter of
|
|
# type pandas.Series in the 'fit' function.
|
|
estimator = clone(estimator_orig)
|
|
try:
|
|
import pandas as pd
|
|
|
|
X = np.array(
|
|
[
|
|
[1, 1],
|
|
[1, 2],
|
|
[1, 3],
|
|
[1, 4],
|
|
[2, 1],
|
|
[2, 2],
|
|
[2, 3],
|
|
[2, 4],
|
|
[3, 1],
|
|
[3, 2],
|
|
[3, 3],
|
|
[3, 4],
|
|
]
|
|
)
|
|
X = pd.DataFrame(_enforce_estimator_tags_X(estimator_orig, X))
|
|
y = pd.Series([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2])
|
|
weights = pd.Series([1] * 12)
|
|
if _safe_tags(estimator, key="multioutput_only"):
|
|
y = pd.DataFrame(y)
|
|
try:
|
|
estimator.fit(X, y, sample_weight=weights)
|
|
except ValueError:
|
|
raise ValueError(
|
|
"Estimator {0} raises error if "
|
|
"'sample_weight' parameter is of "
|
|
"type pandas.Series".format(name)
|
|
)
|
|
except ImportError:
|
|
raise SkipTest(
|
|
"pandas is not installed: not testing for "
|
|
"input of type pandas.Series to class weight."
|
|
)
|
|
|
|
|
|
@ignore_warnings(category=(FutureWarning))
|
|
def check_sample_weights_not_an_array(name, estimator_orig):
|
|
# check that estimators will accept a 'sample_weight' parameter of
|
|
# type _NotAnArray in the 'fit' function.
|
|
estimator = clone(estimator_orig)
|
|
X = np.array(
|
|
[
|
|
[1, 1],
|
|
[1, 2],
|
|
[1, 3],
|
|
[1, 4],
|
|
[2, 1],
|
|
[2, 2],
|
|
[2, 3],
|
|
[2, 4],
|
|
[3, 1],
|
|
[3, 2],
|
|
[3, 3],
|
|
[3, 4],
|
|
]
|
|
)
|
|
X = _NotAnArray(_enforce_estimator_tags_X(estimator_orig, X))
|
|
y = _NotAnArray([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2])
|
|
weights = _NotAnArray([1] * 12)
|
|
if _safe_tags(estimator, key="multioutput_only"):
|
|
y = _NotAnArray(y.data.reshape(-1, 1))
|
|
estimator.fit(X, y, sample_weight=weights)
|
|
|
|
|
|
@ignore_warnings(category=(FutureWarning))
|
|
def check_sample_weights_list(name, estimator_orig):
|
|
# check that estimators will accept a 'sample_weight' parameter of
|
|
# type list in the 'fit' function.
|
|
estimator = clone(estimator_orig)
|
|
rnd = np.random.RandomState(0)
|
|
n_samples = 30
|
|
X = _enforce_estimator_tags_X(estimator_orig, rnd.uniform(size=(n_samples, 3)))
|
|
y = np.arange(n_samples) % 3
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
sample_weight = [3] * n_samples
|
|
# Test that estimators don't raise any exception
|
|
estimator.fit(X, y, sample_weight=sample_weight)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_sample_weights_shape(name, estimator_orig):
|
|
# check that estimators raise an error if sample_weight
|
|
# shape mismatches the input
|
|
estimator = clone(estimator_orig)
|
|
X = np.array(
|
|
[
|
|
[1, 3],
|
|
[1, 3],
|
|
[1, 3],
|
|
[1, 3],
|
|
[2, 1],
|
|
[2, 1],
|
|
[2, 1],
|
|
[2, 1],
|
|
[3, 3],
|
|
[3, 3],
|
|
[3, 3],
|
|
[3, 3],
|
|
[4, 1],
|
|
[4, 1],
|
|
[4, 1],
|
|
[4, 1],
|
|
]
|
|
)
|
|
y = np.array([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2])
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
estimator.fit(X, y, sample_weight=np.ones(len(y)))
|
|
|
|
with raises(ValueError):
|
|
estimator.fit(X, y, sample_weight=np.ones(2 * len(y)))
|
|
|
|
with raises(ValueError):
|
|
estimator.fit(X, y, sample_weight=np.ones((len(y), 2)))
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_sample_weights_invariance(name, estimator_orig, kind="ones"):
|
|
# For kind="ones" check that the estimators yield same results for
|
|
# unit weights and no weights
|
|
# For kind="zeros" check that setting sample_weight to 0 is equivalent
|
|
# to removing corresponding samples.
|
|
estimator1 = clone(estimator_orig)
|
|
estimator2 = clone(estimator_orig)
|
|
set_random_state(estimator1, random_state=0)
|
|
set_random_state(estimator2, random_state=0)
|
|
|
|
X1 = np.array(
|
|
[
|
|
[1, 3],
|
|
[1, 3],
|
|
[1, 3],
|
|
[1, 3],
|
|
[2, 1],
|
|
[2, 1],
|
|
[2, 1],
|
|
[2, 1],
|
|
[3, 3],
|
|
[3, 3],
|
|
[3, 3],
|
|
[3, 3],
|
|
[4, 1],
|
|
[4, 1],
|
|
[4, 1],
|
|
[4, 1],
|
|
],
|
|
dtype=np.float64,
|
|
)
|
|
y1 = np.array([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int)
|
|
|
|
if kind == "ones":
|
|
X2 = X1
|
|
y2 = y1
|
|
sw2 = np.ones(shape=len(y1))
|
|
err_msg = (
|
|
f"For {name} sample_weight=None is not equivalent to sample_weight=ones"
|
|
)
|
|
elif kind == "zeros":
|
|
# Construct a dataset that is very different to (X, y) if weights
|
|
# are disregarded, but identical to (X, y) given weights.
|
|
X2 = np.vstack([X1, X1 + 1])
|
|
y2 = np.hstack([y1, 3 - y1])
|
|
sw2 = np.ones(shape=len(y1) * 2)
|
|
sw2[len(y1) :] = 0
|
|
X2, y2, sw2 = shuffle(X2, y2, sw2, random_state=0)
|
|
|
|
err_msg = (
|
|
f"For {name}, a zero sample_weight is not equivalent to removing the sample"
|
|
)
|
|
else: # pragma: no cover
|
|
raise ValueError
|
|
|
|
y1 = _enforce_estimator_tags_y(estimator1, y1)
|
|
y2 = _enforce_estimator_tags_y(estimator2, y2)
|
|
|
|
estimator1.fit(X1, y=y1, sample_weight=None)
|
|
estimator2.fit(X2, y=y2, sample_weight=sw2)
|
|
|
|
for method in ["predict", "predict_proba", "decision_function", "transform"]:
|
|
if hasattr(estimator_orig, method):
|
|
X_pred1 = getattr(estimator1, method)(X1)
|
|
X_pred2 = getattr(estimator2, method)(X1)
|
|
assert_allclose_dense_sparse(X_pred1, X_pred2, err_msg=err_msg)
|
|
|
|
|
|
def check_sample_weights_not_overwritten(name, estimator_orig):
|
|
# check that estimators don't override the passed sample_weight parameter
|
|
estimator = clone(estimator_orig)
|
|
set_random_state(estimator, random_state=0)
|
|
|
|
X = np.array(
|
|
[
|
|
[1, 3],
|
|
[1, 3],
|
|
[1, 3],
|
|
[1, 3],
|
|
[2, 1],
|
|
[2, 1],
|
|
[2, 1],
|
|
[2, 1],
|
|
[3, 3],
|
|
[3, 3],
|
|
[3, 3],
|
|
[3, 3],
|
|
[4, 1],
|
|
[4, 1],
|
|
[4, 1],
|
|
[4, 1],
|
|
],
|
|
dtype=np.float64,
|
|
)
|
|
y = np.array([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
sample_weight_original = np.ones(y.shape[0])
|
|
sample_weight_original[0] = 10.0
|
|
|
|
sample_weight_fit = sample_weight_original.copy()
|
|
|
|
estimator.fit(X, y, sample_weight=sample_weight_fit)
|
|
|
|
err_msg = f"{name} overwrote the original `sample_weight` given during fit"
|
|
assert_allclose(sample_weight_fit, sample_weight_original, err_msg=err_msg)
|
|
|
|
|
|
@ignore_warnings(category=(FutureWarning, UserWarning))
|
|
def check_dtype_object(name, estimator_orig):
|
|
# check that estimators treat dtype object as numeric if possible
|
|
rng = np.random.RandomState(0)
|
|
X = _enforce_estimator_tags_X(estimator_orig, rng.uniform(size=(40, 10)))
|
|
X = X.astype(object)
|
|
tags = _safe_tags(estimator_orig)
|
|
y = (X[:, 0] * 4).astype(int)
|
|
estimator = clone(estimator_orig)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
estimator.fit(X, y)
|
|
if hasattr(estimator, "predict"):
|
|
estimator.predict(X)
|
|
|
|
if hasattr(estimator, "transform"):
|
|
estimator.transform(X)
|
|
|
|
with raises(Exception, match="Unknown label type", may_pass=True):
|
|
estimator.fit(X, y.astype(object))
|
|
|
|
if "string" not in tags["X_types"]:
|
|
X[0, 0] = {"foo": "bar"}
|
|
msg = "argument must be a string.* number"
|
|
with raises(TypeError, match=msg):
|
|
estimator.fit(X, y)
|
|
else:
|
|
# Estimators supporting string will not call np.asarray to convert the
|
|
# data to numeric and therefore, the error will not be raised.
|
|
# Checking for each element dtype in the input array will be costly.
|
|
# Refer to #11401 for full discussion.
|
|
estimator.fit(X, y)
|
|
|
|
|
|
def check_complex_data(name, estimator_orig):
|
|
rng = np.random.RandomState(42)
|
|
# check that estimators raise an exception on providing complex data
|
|
X = rng.uniform(size=10) + 1j * rng.uniform(size=10)
|
|
X = X.reshape(-1, 1)
|
|
|
|
# Something both valid for classification and regression
|
|
y = rng.randint(low=0, high=2, size=10) + 1j
|
|
estimator = clone(estimator_orig)
|
|
set_random_state(estimator, random_state=0)
|
|
with raises(ValueError, match="Complex data not supported"):
|
|
estimator.fit(X, y)
|
|
|
|
|
|
@ignore_warnings
|
|
def check_dict_unchanged(name, estimator_orig):
|
|
# this estimator raises
|
|
# ValueError: Found array with 0 feature(s) (shape=(23, 0))
|
|
# while a minimum of 1 is required.
|
|
# error
|
|
if name in ["SpectralCoclustering"]:
|
|
return
|
|
rnd = np.random.RandomState(0)
|
|
if name in ["RANSACRegressor"]:
|
|
X = 3 * rnd.uniform(size=(20, 3))
|
|
else:
|
|
X = 2 * rnd.uniform(size=(20, 3))
|
|
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
|
|
y = X[:, 0].astype(int)
|
|
estimator = clone(estimator_orig)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
if hasattr(estimator, "n_components"):
|
|
estimator.n_components = 1
|
|
|
|
if hasattr(estimator, "n_clusters"):
|
|
estimator.n_clusters = 1
|
|
|
|
if hasattr(estimator, "n_best"):
|
|
estimator.n_best = 1
|
|
|
|
set_random_state(estimator, 1)
|
|
|
|
estimator.fit(X, y)
|
|
for method in ["predict", "transform", "decision_function", "predict_proba"]:
|
|
if hasattr(estimator, method):
|
|
dict_before = estimator.__dict__.copy()
|
|
getattr(estimator, method)(X)
|
|
assert estimator.__dict__ == dict_before, (
|
|
"Estimator changes __dict__ during %s" % method
|
|
)
|
|
|
|
|
|
def _is_public_parameter(attr):
|
|
return not (attr.startswith("_") or attr.endswith("_"))
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_dont_overwrite_parameters(name, estimator_orig):
|
|
# check that fit method only changes or sets private attributes
|
|
if hasattr(estimator_orig.__init__, "deprecated_original"):
|
|
# to not check deprecated classes
|
|
return
|
|
estimator = clone(estimator_orig)
|
|
rnd = np.random.RandomState(0)
|
|
X = 3 * rnd.uniform(size=(20, 3))
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
y = X[:, 0].astype(int)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
if hasattr(estimator, "n_components"):
|
|
estimator.n_components = 1
|
|
if hasattr(estimator, "n_clusters"):
|
|
estimator.n_clusters = 1
|
|
|
|
set_random_state(estimator, 1)
|
|
dict_before_fit = estimator.__dict__.copy()
|
|
estimator.fit(X, y)
|
|
|
|
dict_after_fit = estimator.__dict__
|
|
|
|
public_keys_after_fit = [
|
|
key for key in dict_after_fit.keys() if _is_public_parameter(key)
|
|
]
|
|
|
|
attrs_added_by_fit = [
|
|
key for key in public_keys_after_fit if key not in dict_before_fit.keys()
|
|
]
|
|
|
|
# check that fit doesn't add any public attribute
|
|
assert not attrs_added_by_fit, (
|
|
"Estimator adds public attribute(s) during"
|
|
" the fit method."
|
|
" Estimators are only allowed to add private attributes"
|
|
" either started with _ or ended"
|
|
" with _ but %s added"
|
|
% ", ".join(attrs_added_by_fit)
|
|
)
|
|
|
|
# check that fit doesn't change any public attribute
|
|
attrs_changed_by_fit = [
|
|
key
|
|
for key in public_keys_after_fit
|
|
if (dict_before_fit[key] is not dict_after_fit[key])
|
|
]
|
|
|
|
assert not attrs_changed_by_fit, (
|
|
"Estimator changes public attribute(s) during"
|
|
" the fit method. Estimators are only allowed"
|
|
" to change attributes started"
|
|
" or ended with _, but"
|
|
" %s changed"
|
|
% ", ".join(attrs_changed_by_fit)
|
|
)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_fit2d_predict1d(name, estimator_orig):
|
|
# check by fitting a 2d array and predicting with a 1d array
|
|
rnd = np.random.RandomState(0)
|
|
X = 3 * rnd.uniform(size=(20, 3))
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
y = X[:, 0].astype(int)
|
|
estimator = clone(estimator_orig)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
if hasattr(estimator, "n_components"):
|
|
estimator.n_components = 1
|
|
if hasattr(estimator, "n_clusters"):
|
|
estimator.n_clusters = 1
|
|
|
|
set_random_state(estimator, 1)
|
|
estimator.fit(X, y)
|
|
|
|
for method in ["predict", "transform", "decision_function", "predict_proba"]:
|
|
if hasattr(estimator, method):
|
|
assert_raise_message(
|
|
ValueError, "Reshape your data", getattr(estimator, method), X[0]
|
|
)
|
|
|
|
|
|
def _apply_on_subsets(func, X):
|
|
# apply function on the whole set and on mini batches
|
|
result_full = func(X)
|
|
n_features = X.shape[1]
|
|
result_by_batch = [func(batch.reshape(1, n_features)) for batch in X]
|
|
|
|
# func can output tuple (e.g. score_samples)
|
|
if type(result_full) == tuple:
|
|
result_full = result_full[0]
|
|
result_by_batch = list(map(lambda x: x[0], result_by_batch))
|
|
|
|
if sparse.issparse(result_full):
|
|
result_full = result_full.A
|
|
result_by_batch = [x.A for x in result_by_batch]
|
|
|
|
return np.ravel(result_full), np.ravel(result_by_batch)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_methods_subset_invariance(name, estimator_orig):
|
|
# check that method gives invariant results if applied
|
|
# on mini batches or the whole set
|
|
rnd = np.random.RandomState(0)
|
|
X = 3 * rnd.uniform(size=(20, 3))
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
y = X[:, 0].astype(int)
|
|
estimator = clone(estimator_orig)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
if hasattr(estimator, "n_components"):
|
|
estimator.n_components = 1
|
|
if hasattr(estimator, "n_clusters"):
|
|
estimator.n_clusters = 1
|
|
|
|
set_random_state(estimator, 1)
|
|
estimator.fit(X, y)
|
|
|
|
for method in [
|
|
"predict",
|
|
"transform",
|
|
"decision_function",
|
|
"score_samples",
|
|
"predict_proba",
|
|
]:
|
|
|
|
msg = ("{method} of {name} is not invariant when applied to a subset.").format(
|
|
method=method, name=name
|
|
)
|
|
|
|
if hasattr(estimator, method):
|
|
result_full, result_by_batch = _apply_on_subsets(
|
|
getattr(estimator, method), X
|
|
)
|
|
assert_allclose(result_full, result_by_batch, atol=1e-7, err_msg=msg)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_methods_sample_order_invariance(name, estimator_orig):
|
|
# check that method gives invariant results if applied
|
|
# on a subset with different sample order
|
|
rnd = np.random.RandomState(0)
|
|
X = 3 * rnd.uniform(size=(20, 3))
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
y = X[:, 0].astype(np.int64)
|
|
if _safe_tags(estimator_orig, key="binary_only"):
|
|
y[y == 2] = 1
|
|
estimator = clone(estimator_orig)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
if hasattr(estimator, "n_components"):
|
|
estimator.n_components = 1
|
|
if hasattr(estimator, "n_clusters"):
|
|
estimator.n_clusters = 2
|
|
|
|
set_random_state(estimator, 1)
|
|
estimator.fit(X, y)
|
|
|
|
idx = np.random.permutation(X.shape[0])
|
|
|
|
for method in [
|
|
"predict",
|
|
"transform",
|
|
"decision_function",
|
|
"score_samples",
|
|
"predict_proba",
|
|
]:
|
|
msg = (
|
|
"{method} of {name} is not invariant when applied to a dataset"
|
|
"with different sample order."
|
|
).format(method=method, name=name)
|
|
|
|
if hasattr(estimator, method):
|
|
assert_allclose_dense_sparse(
|
|
getattr(estimator, method)(X)[idx],
|
|
getattr(estimator, method)(X[idx]),
|
|
atol=1e-9,
|
|
err_msg=msg,
|
|
)
|
|
|
|
|
|
@ignore_warnings
|
|
def check_fit2d_1sample(name, estimator_orig):
|
|
# Check that fitting a 2d array with only one sample either works or
|
|
# returns an informative message. The error message should either mention
|
|
# the number of samples or the number of classes.
|
|
rnd = np.random.RandomState(0)
|
|
X = 3 * rnd.uniform(size=(1, 10))
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
|
|
y = X[:, 0].astype(int)
|
|
estimator = clone(estimator_orig)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
if hasattr(estimator, "n_components"):
|
|
estimator.n_components = 1
|
|
if hasattr(estimator, "n_clusters"):
|
|
estimator.n_clusters = 1
|
|
|
|
set_random_state(estimator, 1)
|
|
|
|
# min_cluster_size cannot be less than the data size for OPTICS.
|
|
if name == "OPTICS":
|
|
estimator.set_params(min_samples=1)
|
|
|
|
# perplexity cannot be more than the number of samples for TSNE.
|
|
if name == "TSNE":
|
|
estimator.set_params(perplexity=0.5)
|
|
|
|
msgs = [
|
|
"1 sample",
|
|
"n_samples = 1",
|
|
"n_samples=1",
|
|
"one sample",
|
|
"1 class",
|
|
"one class",
|
|
]
|
|
|
|
with raises(ValueError, match=msgs, may_pass=True):
|
|
estimator.fit(X, y)
|
|
|
|
|
|
@ignore_warnings
|
|
def check_fit2d_1feature(name, estimator_orig):
|
|
# check fitting a 2d array with only 1 feature either works or returns
|
|
# informative message
|
|
rnd = np.random.RandomState(0)
|
|
X = 3 * rnd.uniform(size=(10, 1))
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
y = X[:, 0].astype(int)
|
|
estimator = clone(estimator_orig)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
if hasattr(estimator, "n_components"):
|
|
estimator.n_components = 1
|
|
if hasattr(estimator, "n_clusters"):
|
|
estimator.n_clusters = 1
|
|
# ensure two labels in subsample for RandomizedLogisticRegression
|
|
if name == "RandomizedLogisticRegression":
|
|
estimator.sample_fraction = 1
|
|
# ensure non skipped trials for RANSACRegressor
|
|
if name == "RANSACRegressor":
|
|
estimator.residual_threshold = 0.5
|
|
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
set_random_state(estimator, 1)
|
|
|
|
msgs = [r"1 feature\(s\)", "n_features = 1", "n_features=1"]
|
|
|
|
with raises(ValueError, match=msgs, may_pass=True):
|
|
estimator.fit(X, y)
|
|
|
|
|
|
@ignore_warnings
|
|
def check_fit1d(name, estimator_orig):
|
|
# check fitting 1d X array raises a ValueError
|
|
rnd = np.random.RandomState(0)
|
|
X = 3 * rnd.uniform(size=(20))
|
|
y = X.astype(int)
|
|
estimator = clone(estimator_orig)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
if hasattr(estimator, "n_components"):
|
|
estimator.n_components = 1
|
|
if hasattr(estimator, "n_clusters"):
|
|
estimator.n_clusters = 1
|
|
|
|
set_random_state(estimator, 1)
|
|
with raises(ValueError):
|
|
estimator.fit(X, y)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_transformer_general(name, transformer, readonly_memmap=False):
|
|
X, y = make_blobs(
|
|
n_samples=30,
|
|
centers=[[0, 0, 0], [1, 1, 1]],
|
|
random_state=0,
|
|
n_features=2,
|
|
cluster_std=0.1,
|
|
)
|
|
X = StandardScaler().fit_transform(X)
|
|
X = _enforce_estimator_tags_X(transformer, X)
|
|
|
|
if readonly_memmap:
|
|
X, y = create_memmap_backed_data([X, y])
|
|
|
|
_check_transformer(name, transformer, X, y)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_transformer_data_not_an_array(name, transformer):
|
|
X, y = make_blobs(
|
|
n_samples=30,
|
|
centers=[[0, 0, 0], [1, 1, 1]],
|
|
random_state=0,
|
|
n_features=2,
|
|
cluster_std=0.1,
|
|
)
|
|
X = StandardScaler().fit_transform(X)
|
|
X = _enforce_estimator_tags_X(transformer, X)
|
|
this_X = _NotAnArray(X)
|
|
this_y = _NotAnArray(np.asarray(y))
|
|
_check_transformer(name, transformer, this_X, this_y)
|
|
# try the same with some list
|
|
_check_transformer(name, transformer, X.tolist(), y.tolist())
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_transformers_unfitted(name, transformer):
|
|
X, y = _regression_dataset()
|
|
|
|
transformer = clone(transformer)
|
|
with raises(
|
|
(AttributeError, ValueError),
|
|
err_msg=(
|
|
"The unfitted "
|
|
f"transformer {name} does not raise an error when "
|
|
"transform is called. Perhaps use "
|
|
"check_is_fitted in transform."
|
|
),
|
|
):
|
|
transformer.transform(X)
|
|
|
|
|
|
def _check_transformer(name, transformer_orig, X, y):
|
|
n_samples, n_features = np.asarray(X).shape
|
|
transformer = clone(transformer_orig)
|
|
set_random_state(transformer)
|
|
|
|
# fit
|
|
|
|
if name in CROSS_DECOMPOSITION:
|
|
y_ = np.c_[np.asarray(y), np.asarray(y)]
|
|
y_[::2, 1] *= 2
|
|
if isinstance(X, _NotAnArray):
|
|
y_ = _NotAnArray(y_)
|
|
else:
|
|
y_ = y
|
|
|
|
transformer.fit(X, y_)
|
|
# fit_transform method should work on non fitted estimator
|
|
transformer_clone = clone(transformer)
|
|
X_pred = transformer_clone.fit_transform(X, y=y_)
|
|
|
|
if isinstance(X_pred, tuple):
|
|
for x_pred in X_pred:
|
|
assert x_pred.shape[0] == n_samples
|
|
else:
|
|
# check for consistent n_samples
|
|
assert X_pred.shape[0] == n_samples
|
|
|
|
if hasattr(transformer, "transform"):
|
|
if name in CROSS_DECOMPOSITION:
|
|
X_pred2 = transformer.transform(X, y_)
|
|
X_pred3 = transformer.fit_transform(X, y=y_)
|
|
else:
|
|
X_pred2 = transformer.transform(X)
|
|
X_pred3 = transformer.fit_transform(X, y=y_)
|
|
|
|
if _safe_tags(transformer_orig, key="non_deterministic"):
|
|
msg = name + " is non deterministic"
|
|
raise SkipTest(msg)
|
|
if isinstance(X_pred, tuple) and isinstance(X_pred2, tuple):
|
|
for x_pred, x_pred2, x_pred3 in zip(X_pred, X_pred2, X_pred3):
|
|
assert_allclose_dense_sparse(
|
|
x_pred,
|
|
x_pred2,
|
|
atol=1e-2,
|
|
err_msg="fit_transform and transform outcomes not consistent in %s"
|
|
% transformer,
|
|
)
|
|
assert_allclose_dense_sparse(
|
|
x_pred,
|
|
x_pred3,
|
|
atol=1e-2,
|
|
err_msg="consecutive fit_transform outcomes not consistent in %s"
|
|
% transformer,
|
|
)
|
|
else:
|
|
assert_allclose_dense_sparse(
|
|
X_pred,
|
|
X_pred2,
|
|
err_msg="fit_transform and transform outcomes not consistent in %s"
|
|
% transformer,
|
|
atol=1e-2,
|
|
)
|
|
assert_allclose_dense_sparse(
|
|
X_pred,
|
|
X_pred3,
|
|
atol=1e-2,
|
|
err_msg="consecutive fit_transform outcomes not consistent in %s"
|
|
% transformer,
|
|
)
|
|
assert _num_samples(X_pred2) == n_samples
|
|
assert _num_samples(X_pred3) == n_samples
|
|
|
|
# raises error on malformed input for transform
|
|
if (
|
|
hasattr(X, "shape")
|
|
and not _safe_tags(transformer, key="stateless")
|
|
and X.ndim == 2
|
|
and X.shape[1] > 1
|
|
):
|
|
|
|
# If it's not an array, it does not have a 'T' property
|
|
with raises(
|
|
ValueError,
|
|
err_msg=(
|
|
f"The transformer {name} does not raise an error "
|
|
"when the number of features in transform is different from "
|
|
"the number of features in fit."
|
|
),
|
|
):
|
|
transformer.transform(X[:, :-1])
|
|
|
|
|
|
@ignore_warnings
|
|
def check_pipeline_consistency(name, estimator_orig):
|
|
if _safe_tags(estimator_orig, key="non_deterministic"):
|
|
msg = name + " is non deterministic"
|
|
raise SkipTest(msg)
|
|
|
|
# check that make_pipeline(est) gives same score as est
|
|
X, y = make_blobs(
|
|
n_samples=30,
|
|
centers=[[0, 0, 0], [1, 1, 1]],
|
|
random_state=0,
|
|
n_features=2,
|
|
cluster_std=0.1,
|
|
)
|
|
X = _enforce_estimator_tags_X(estimator_orig, X, kernel=rbf_kernel)
|
|
estimator = clone(estimator_orig)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
set_random_state(estimator)
|
|
pipeline = make_pipeline(estimator)
|
|
estimator.fit(X, y)
|
|
pipeline.fit(X, y)
|
|
|
|
funcs = ["score", "fit_transform"]
|
|
|
|
for func_name in funcs:
|
|
func = getattr(estimator, func_name, None)
|
|
if func is not None:
|
|
func_pipeline = getattr(pipeline, func_name)
|
|
result = func(X, y)
|
|
result_pipe = func_pipeline(X, y)
|
|
assert_allclose_dense_sparse(result, result_pipe)
|
|
|
|
|
|
@ignore_warnings
|
|
def check_fit_score_takes_y(name, estimator_orig):
|
|
# check that all estimators accept an optional y
|
|
# in fit and score so they can be used in pipelines
|
|
rnd = np.random.RandomState(0)
|
|
n_samples = 30
|
|
X = rnd.uniform(size=(n_samples, 3))
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
y = np.arange(n_samples) % 3
|
|
estimator = clone(estimator_orig)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
set_random_state(estimator)
|
|
|
|
funcs = ["fit", "score", "partial_fit", "fit_predict", "fit_transform"]
|
|
for func_name in funcs:
|
|
func = getattr(estimator, func_name, None)
|
|
if func is not None:
|
|
func(X, y)
|
|
args = [p.name for p in signature(func).parameters.values()]
|
|
if args[0] == "self":
|
|
# if_delegate_has_method makes methods into functions
|
|
# with an explicit "self", so need to shift arguments
|
|
args = args[1:]
|
|
assert args[1] in ["y", "Y"], (
|
|
"Expected y or Y as second argument for method "
|
|
"%s of %s. Got arguments: %r."
|
|
% (func_name, type(estimator).__name__, args)
|
|
)
|
|
|
|
|
|
@ignore_warnings
|
|
def check_estimators_dtypes(name, estimator_orig):
|
|
rnd = np.random.RandomState(0)
|
|
X_train_32 = 3 * rnd.uniform(size=(20, 5)).astype(np.float32)
|
|
X_train_32 = _enforce_estimator_tags_X(estimator_orig, X_train_32)
|
|
X_train_64 = X_train_32.astype(np.float64)
|
|
X_train_int_64 = X_train_32.astype(np.int64)
|
|
X_train_int_32 = X_train_32.astype(np.int32)
|
|
y = X_train_int_64[:, 0]
|
|
y = _enforce_estimator_tags_y(estimator_orig, y)
|
|
|
|
methods = ["predict", "transform", "decision_function", "predict_proba"]
|
|
|
|
for X_train in [X_train_32, X_train_64, X_train_int_64, X_train_int_32]:
|
|
estimator = clone(estimator_orig)
|
|
set_random_state(estimator, 1)
|
|
estimator.fit(X_train, y)
|
|
|
|
for method in methods:
|
|
if hasattr(estimator, method):
|
|
getattr(estimator, method)(X_train)
|
|
|
|
|
|
def check_transformer_preserve_dtypes(name, transformer_orig):
|
|
# check that dtype are preserved meaning if input X is of some dtype
|
|
# X_transformed should be from the same dtype.
|
|
X, y = make_blobs(
|
|
n_samples=30,
|
|
centers=[[0, 0, 0], [1, 1, 1]],
|
|
random_state=0,
|
|
cluster_std=0.1,
|
|
)
|
|
X = StandardScaler().fit_transform(X)
|
|
X = _enforce_estimator_tags_X(transformer_orig, X)
|
|
|
|
for dtype in _safe_tags(transformer_orig, key="preserves_dtype"):
|
|
X_cast = X.astype(dtype)
|
|
transformer = clone(transformer_orig)
|
|
set_random_state(transformer)
|
|
X_trans1 = transformer.fit_transform(X_cast, y)
|
|
X_trans2 = transformer.fit(X_cast, y).transform(X_cast)
|
|
|
|
for Xt, method in zip([X_trans1, X_trans2], ["fit_transform", "transform"]):
|
|
if isinstance(Xt, tuple):
|
|
# cross-decompostion returns a tuple of (x_scores, y_scores)
|
|
# when given y with fit_transform; only check the first element
|
|
Xt = Xt[0]
|
|
|
|
# check that the output dtype is preserved
|
|
assert Xt.dtype == dtype, (
|
|
f"{name} (method={method}) does not preserve dtype. "
|
|
f"Original/Expected dtype={dtype.__name__}, got dtype={Xt.dtype}."
|
|
)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_estimators_empty_data_messages(name, estimator_orig):
|
|
e = clone(estimator_orig)
|
|
set_random_state(e, 1)
|
|
|
|
X_zero_samples = np.empty(0).reshape(0, 3)
|
|
# The precise message can change depending on whether X or y is
|
|
# validated first. Let us test the type of exception only:
|
|
err_msg = (
|
|
f"The estimator {name} does not raise a ValueError when an "
|
|
"empty data is used to train. Perhaps use check_array in train."
|
|
)
|
|
with raises(ValueError, err_msg=err_msg):
|
|
e.fit(X_zero_samples, [])
|
|
|
|
X_zero_features = np.empty(0).reshape(12, 0)
|
|
# the following y should be accepted by both classifiers and regressors
|
|
# and ignored by unsupervised models
|
|
y = _enforce_estimator_tags_y(e, np.array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]))
|
|
msg = r"0 feature\(s\) \(shape=\(\d*, 0\)\) while a minimum of \d* " "is required."
|
|
with raises(ValueError, match=msg):
|
|
e.fit(X_zero_features, y)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_estimators_nan_inf(name, estimator_orig):
|
|
# Checks that Estimator X's do not contain NaN or inf.
|
|
rnd = np.random.RandomState(0)
|
|
X_train_finite = _enforce_estimator_tags_X(
|
|
estimator_orig, rnd.uniform(size=(10, 3))
|
|
)
|
|
X_train_nan = rnd.uniform(size=(10, 3))
|
|
X_train_nan[0, 0] = np.nan
|
|
X_train_inf = rnd.uniform(size=(10, 3))
|
|
X_train_inf[0, 0] = np.inf
|
|
y = np.ones(10)
|
|
y[:5] = 0
|
|
y = _enforce_estimator_tags_y(estimator_orig, y)
|
|
error_string_fit = f"Estimator {name} doesn't check for NaN and inf in fit."
|
|
error_string_predict = f"Estimator {name} doesn't check for NaN and inf in predict."
|
|
error_string_transform = (
|
|
f"Estimator {name} doesn't check for NaN and inf in transform."
|
|
)
|
|
for X_train in [X_train_nan, X_train_inf]:
|
|
# catch deprecation warnings
|
|
with ignore_warnings(category=FutureWarning):
|
|
estimator = clone(estimator_orig)
|
|
set_random_state(estimator, 1)
|
|
# try to fit
|
|
with raises(ValueError, match=["inf", "NaN"], err_msg=error_string_fit):
|
|
estimator.fit(X_train, y)
|
|
# actually fit
|
|
estimator.fit(X_train_finite, y)
|
|
|
|
# predict
|
|
if hasattr(estimator, "predict"):
|
|
with raises(
|
|
ValueError,
|
|
match=["inf", "NaN"],
|
|
err_msg=error_string_predict,
|
|
):
|
|
estimator.predict(X_train)
|
|
|
|
# transform
|
|
if hasattr(estimator, "transform"):
|
|
with raises(
|
|
ValueError,
|
|
match=["inf", "NaN"],
|
|
err_msg=error_string_transform,
|
|
):
|
|
estimator.transform(X_train)
|
|
|
|
|
|
@ignore_warnings
|
|
def check_nonsquare_error(name, estimator_orig):
|
|
"""Test that error is thrown when non-square data provided."""
|
|
|
|
X, y = make_blobs(n_samples=20, n_features=10)
|
|
estimator = clone(estimator_orig)
|
|
|
|
with raises(
|
|
ValueError,
|
|
err_msg=(
|
|
f"The pairwise estimator {name} does not raise an error on non-square data"
|
|
),
|
|
):
|
|
estimator.fit(X, y)
|
|
|
|
|
|
@ignore_warnings
|
|
def check_estimators_pickle(name, estimator_orig):
|
|
"""Test that we can pickle all estimators."""
|
|
check_methods = ["predict", "transform", "decision_function", "predict_proba"]
|
|
|
|
X, y = make_blobs(
|
|
n_samples=30,
|
|
centers=[[0, 0, 0], [1, 1, 1]],
|
|
random_state=0,
|
|
n_features=2,
|
|
cluster_std=0.1,
|
|
)
|
|
|
|
X = _enforce_estimator_tags_X(estimator_orig, X, kernel=rbf_kernel)
|
|
|
|
tags = _safe_tags(estimator_orig)
|
|
# include NaN values when the estimator should deal with them
|
|
if tags["allow_nan"]:
|
|
# set randomly 10 elements to np.nan
|
|
rng = np.random.RandomState(42)
|
|
mask = rng.choice(X.size, 10, replace=False)
|
|
X.reshape(-1)[mask] = np.nan
|
|
|
|
estimator = clone(estimator_orig)
|
|
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
set_random_state(estimator)
|
|
estimator.fit(X, y)
|
|
|
|
# pickle and unpickle!
|
|
pickled_estimator = pickle.dumps(estimator)
|
|
module_name = estimator.__module__
|
|
if module_name.startswith("sklearn.") and not (
|
|
"test_" in module_name or module_name.endswith("_testing")
|
|
):
|
|
# strict check for sklearn estimators that are not implemented in test
|
|
# modules.
|
|
assert b"version" in pickled_estimator
|
|
unpickled_estimator = pickle.loads(pickled_estimator)
|
|
|
|
result = dict()
|
|
for method in check_methods:
|
|
if hasattr(estimator, method):
|
|
result[method] = getattr(estimator, method)(X)
|
|
|
|
for method in result:
|
|
unpickled_result = getattr(unpickled_estimator, method)(X)
|
|
assert_allclose_dense_sparse(result[method], unpickled_result)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_estimators_partial_fit_n_features(name, estimator_orig):
|
|
# check if number of features changes between calls to partial_fit.
|
|
if not hasattr(estimator_orig, "partial_fit"):
|
|
return
|
|
estimator = clone(estimator_orig)
|
|
X, y = make_blobs(n_samples=50, random_state=1)
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
y = _enforce_estimator_tags_y(estimator_orig, y)
|
|
|
|
try:
|
|
if is_classifier(estimator):
|
|
classes = np.unique(y)
|
|
estimator.partial_fit(X, y, classes=classes)
|
|
else:
|
|
estimator.partial_fit(X, y)
|
|
except NotImplementedError:
|
|
return
|
|
|
|
with raises(
|
|
ValueError,
|
|
err_msg=(
|
|
f"The estimator {name} does not raise an error when the "
|
|
"number of features changes between calls to partial_fit."
|
|
),
|
|
):
|
|
estimator.partial_fit(X[:, :-1], y)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_classifier_multioutput(name, estimator):
|
|
n_samples, n_labels, n_classes = 42, 5, 3
|
|
tags = _safe_tags(estimator)
|
|
estimator = clone(estimator)
|
|
X, y = make_multilabel_classification(
|
|
random_state=42, n_samples=n_samples, n_labels=n_labels, n_classes=n_classes
|
|
)
|
|
estimator.fit(X, y)
|
|
y_pred = estimator.predict(X)
|
|
|
|
assert y_pred.shape == (n_samples, n_classes), (
|
|
"The shape of the prediction for multioutput data is "
|
|
"incorrect. Expected {}, got {}.".format((n_samples, n_labels), y_pred.shape)
|
|
)
|
|
assert y_pred.dtype.kind == "i"
|
|
|
|
if hasattr(estimator, "decision_function"):
|
|
decision = estimator.decision_function(X)
|
|
assert isinstance(decision, np.ndarray)
|
|
assert decision.shape == (n_samples, n_classes), (
|
|
"The shape of the decision function output for "
|
|
"multioutput data is incorrect. Expected {}, got {}.".format(
|
|
(n_samples, n_classes), decision.shape
|
|
)
|
|
)
|
|
|
|
dec_pred = (decision > 0).astype(int)
|
|
dec_exp = estimator.classes_[dec_pred]
|
|
assert_array_equal(dec_exp, y_pred)
|
|
|
|
if hasattr(estimator, "predict_proba"):
|
|
y_prob = estimator.predict_proba(X)
|
|
|
|
if isinstance(y_prob, list) and not tags["poor_score"]:
|
|
for i in range(n_classes):
|
|
assert y_prob[i].shape == (n_samples, 2), (
|
|
"The shape of the probability for multioutput data is"
|
|
" incorrect. Expected {}, got {}.".format(
|
|
(n_samples, 2), y_prob[i].shape
|
|
)
|
|
)
|
|
assert_array_equal(
|
|
np.argmax(y_prob[i], axis=1).astype(int), y_pred[:, i]
|
|
)
|
|
elif not tags["poor_score"]:
|
|
assert y_prob.shape == (n_samples, n_classes), (
|
|
"The shape of the probability for multioutput data is"
|
|
" incorrect. Expected {}, got {}.".format(
|
|
(n_samples, n_classes), y_prob.shape
|
|
)
|
|
)
|
|
assert_array_equal(y_prob.round().astype(int), y_pred)
|
|
|
|
if hasattr(estimator, "decision_function") and hasattr(estimator, "predict_proba"):
|
|
for i in range(n_classes):
|
|
y_proba = estimator.predict_proba(X)[:, i]
|
|
y_decision = estimator.decision_function(X)
|
|
assert_array_equal(rankdata(y_proba), rankdata(y_decision[:, i]))
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_regressor_multioutput(name, estimator):
|
|
estimator = clone(estimator)
|
|
n_samples = n_features = 10
|
|
|
|
if not _is_pairwise_metric(estimator):
|
|
n_samples = n_samples + 1
|
|
|
|
X, y = make_regression(
|
|
random_state=42, n_targets=5, n_samples=n_samples, n_features=n_features
|
|
)
|
|
X = _enforce_estimator_tags_X(estimator, X)
|
|
|
|
estimator.fit(X, y)
|
|
y_pred = estimator.predict(X)
|
|
|
|
assert y_pred.dtype == np.dtype("float64"), (
|
|
"Multioutput predictions by a regressor are expected to be"
|
|
" floating-point precision. Got {} instead".format(y_pred.dtype)
|
|
)
|
|
assert y_pred.shape == y.shape, (
|
|
"The shape of the prediction for multioutput data is incorrect."
|
|
" Expected {}, got {}."
|
|
)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_clustering(name, clusterer_orig, readonly_memmap=False):
|
|
clusterer = clone(clusterer_orig)
|
|
X, y = make_blobs(n_samples=50, random_state=1)
|
|
X, y = shuffle(X, y, random_state=7)
|
|
X = StandardScaler().fit_transform(X)
|
|
rng = np.random.RandomState(7)
|
|
X_noise = np.concatenate([X, rng.uniform(low=-3, high=3, size=(5, 2))])
|
|
|
|
if readonly_memmap:
|
|
X, y, X_noise = create_memmap_backed_data([X, y, X_noise])
|
|
|
|
n_samples, n_features = X.shape
|
|
# catch deprecation and neighbors warnings
|
|
if hasattr(clusterer, "n_clusters"):
|
|
clusterer.set_params(n_clusters=3)
|
|
set_random_state(clusterer)
|
|
if name == "AffinityPropagation":
|
|
clusterer.set_params(preference=-100)
|
|
clusterer.set_params(max_iter=100)
|
|
|
|
# fit
|
|
clusterer.fit(X)
|
|
# with lists
|
|
clusterer.fit(X.tolist())
|
|
|
|
pred = clusterer.labels_
|
|
assert pred.shape == (n_samples,)
|
|
assert adjusted_rand_score(pred, y) > 0.4
|
|
if _safe_tags(clusterer, key="non_deterministic"):
|
|
return
|
|
set_random_state(clusterer)
|
|
with warnings.catch_warnings(record=True):
|
|
pred2 = clusterer.fit_predict(X)
|
|
assert_array_equal(pred, pred2)
|
|
|
|
# fit_predict(X) and labels_ should be of type int
|
|
assert pred.dtype in [np.dtype("int32"), np.dtype("int64")]
|
|
assert pred2.dtype in [np.dtype("int32"), np.dtype("int64")]
|
|
|
|
# Add noise to X to test the possible values of the labels
|
|
labels = clusterer.fit_predict(X_noise)
|
|
|
|
# There should be at least one sample in every cluster. Equivalently
|
|
# labels_ should contain all the consecutive values between its
|
|
# min and its max.
|
|
labels_sorted = np.unique(labels)
|
|
assert_array_equal(
|
|
labels_sorted, np.arange(labels_sorted[0], labels_sorted[-1] + 1)
|
|
)
|
|
|
|
# Labels are expected to start at 0 (no noise) or -1 (if noise)
|
|
assert labels_sorted[0] in [0, -1]
|
|
# Labels should be less than n_clusters - 1
|
|
if hasattr(clusterer, "n_clusters"):
|
|
n_clusters = getattr(clusterer, "n_clusters")
|
|
assert n_clusters - 1 >= labels_sorted[-1]
|
|
# else labels should be less than max(labels_) which is necessarily true
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_clusterer_compute_labels_predict(name, clusterer_orig):
|
|
"""Check that predict is invariant of compute_labels."""
|
|
X, y = make_blobs(n_samples=20, random_state=0)
|
|
clusterer = clone(clusterer_orig)
|
|
set_random_state(clusterer)
|
|
|
|
if hasattr(clusterer, "compute_labels"):
|
|
# MiniBatchKMeans
|
|
X_pred1 = clusterer.fit(X).predict(X)
|
|
clusterer.set_params(compute_labels=False)
|
|
X_pred2 = clusterer.fit(X).predict(X)
|
|
assert_array_equal(X_pred1, X_pred2)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_classifiers_one_label(name, classifier_orig):
|
|
error_string_fit = "Classifier can't train when only one class is present."
|
|
error_string_predict = "Classifier can't predict when only one class is present."
|
|
rnd = np.random.RandomState(0)
|
|
X_train = rnd.uniform(size=(10, 3))
|
|
X_test = rnd.uniform(size=(10, 3))
|
|
y = np.ones(10)
|
|
# catch deprecation warnings
|
|
with ignore_warnings(category=FutureWarning):
|
|
classifier = clone(classifier_orig)
|
|
with raises(
|
|
ValueError, match="class", may_pass=True, err_msg=error_string_fit
|
|
) as cm:
|
|
classifier.fit(X_train, y)
|
|
|
|
if cm.raised_and_matched:
|
|
# ValueError was raised with proper error message
|
|
return
|
|
|
|
assert_array_equal(classifier.predict(X_test), y, err_msg=error_string_predict)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_classifiers_one_label_sample_weights(name, classifier_orig):
|
|
"""Check that classifiers accepting sample_weight fit or throws a ValueError with
|
|
an explicit message if the problem is reduced to one class.
|
|
"""
|
|
error_fit = (
|
|
f"{name} failed when fitted on one label after sample_weight trimming. Error "
|
|
"message is not explicit, it should have 'class'."
|
|
)
|
|
error_predict = f"{name} prediction results should only output the remaining class."
|
|
rnd = np.random.RandomState(0)
|
|
# X should be square for test on SVC with precomputed kernel
|
|
X_train = rnd.uniform(size=(10, 10))
|
|
X_test = rnd.uniform(size=(10, 10))
|
|
y = np.arange(10) % 2
|
|
sample_weight = y.copy() # select a single class
|
|
classifier = clone(classifier_orig)
|
|
|
|
if has_fit_parameter(classifier, "sample_weight"):
|
|
match = [r"\bclass(es)?\b", error_predict]
|
|
err_type, err_msg = (AssertionError, ValueError), error_fit
|
|
else:
|
|
match = r"\bsample_weight\b"
|
|
err_type, err_msg = (TypeError, ValueError), None
|
|
|
|
with raises(err_type, match=match, may_pass=True, err_msg=err_msg) as cm:
|
|
classifier.fit(X_train, y, sample_weight=sample_weight)
|
|
if cm.raised_and_matched:
|
|
# raise the proper error type with the proper error message
|
|
return
|
|
# for estimators that do not fail, they should be able to predict the only
|
|
# class remaining during fit
|
|
assert_array_equal(
|
|
classifier.predict(X_test), np.ones(10), err_msg=error_predict
|
|
)
|
|
|
|
|
|
@ignore_warnings # Warnings are raised by decision function
|
|
def check_classifiers_train(
|
|
name, classifier_orig, readonly_memmap=False, X_dtype="float64"
|
|
):
|
|
X_m, y_m = make_blobs(n_samples=300, random_state=0)
|
|
X_m = X_m.astype(X_dtype)
|
|
X_m, y_m = shuffle(X_m, y_m, random_state=7)
|
|
X_m = StandardScaler().fit_transform(X_m)
|
|
# generate binary problem from multi-class one
|
|
y_b = y_m[y_m != 2]
|
|
X_b = X_m[y_m != 2]
|
|
|
|
if name in ["BernoulliNB", "MultinomialNB", "ComplementNB", "CategoricalNB"]:
|
|
X_m -= X_m.min()
|
|
X_b -= X_b.min()
|
|
|
|
if readonly_memmap:
|
|
X_m, y_m, X_b, y_b = create_memmap_backed_data([X_m, y_m, X_b, y_b])
|
|
|
|
problems = [(X_b, y_b)]
|
|
tags = _safe_tags(classifier_orig)
|
|
if not tags["binary_only"]:
|
|
problems.append((X_m, y_m))
|
|
|
|
for X, y in problems:
|
|
classes = np.unique(y)
|
|
n_classes = len(classes)
|
|
n_samples, n_features = X.shape
|
|
classifier = clone(classifier_orig)
|
|
X = _enforce_estimator_tags_X(classifier, X)
|
|
y = _enforce_estimator_tags_y(classifier, y)
|
|
|
|
set_random_state(classifier)
|
|
# raises error on malformed input for fit
|
|
if not tags["no_validation"]:
|
|
with raises(
|
|
ValueError,
|
|
err_msg=(
|
|
f"The classifier {name} does not raise an error when "
|
|
"incorrect/malformed input data for fit is passed. The number "
|
|
"of training examples is not the same as the number of "
|
|
"labels. Perhaps use check_X_y in fit."
|
|
),
|
|
):
|
|
classifier.fit(X, y[:-1])
|
|
|
|
# fit
|
|
classifier.fit(X, y)
|
|
# with lists
|
|
classifier.fit(X.tolist(), y.tolist())
|
|
assert hasattr(classifier, "classes_")
|
|
y_pred = classifier.predict(X)
|
|
|
|
assert y_pred.shape == (n_samples,)
|
|
# training set performance
|
|
if not tags["poor_score"]:
|
|
assert accuracy_score(y, y_pred) > 0.83
|
|
|
|
# raises error on malformed input for predict
|
|
msg_pairwise = (
|
|
"The classifier {} does not raise an error when shape of X in "
|
|
" {} is not equal to (n_test_samples, n_training_samples)"
|
|
)
|
|
msg = (
|
|
"The classifier {} does not raise an error when the number of "
|
|
"features in {} is different from the number of features in "
|
|
"fit."
|
|
)
|
|
|
|
if not tags["no_validation"]:
|
|
if tags["pairwise"]:
|
|
with raises(
|
|
ValueError,
|
|
err_msg=msg_pairwise.format(name, "predict"),
|
|
):
|
|
classifier.predict(X.reshape(-1, 1))
|
|
else:
|
|
with raises(ValueError, err_msg=msg.format(name, "predict")):
|
|
classifier.predict(X.T)
|
|
if hasattr(classifier, "decision_function"):
|
|
try:
|
|
# decision_function agrees with predict
|
|
decision = classifier.decision_function(X)
|
|
if n_classes == 2:
|
|
if not tags["multioutput_only"]:
|
|
assert decision.shape == (n_samples,)
|
|
else:
|
|
assert decision.shape == (n_samples, 1)
|
|
dec_pred = (decision.ravel() > 0).astype(int)
|
|
assert_array_equal(dec_pred, y_pred)
|
|
else:
|
|
assert decision.shape == (n_samples, n_classes)
|
|
assert_array_equal(np.argmax(decision, axis=1), y_pred)
|
|
|
|
# raises error on malformed input for decision_function
|
|
if not tags["no_validation"]:
|
|
if tags["pairwise"]:
|
|
with raises(
|
|
ValueError,
|
|
err_msg=msg_pairwise.format(name, "decision_function"),
|
|
):
|
|
classifier.decision_function(X.reshape(-1, 1))
|
|
else:
|
|
with raises(
|
|
ValueError,
|
|
err_msg=msg.format(name, "decision_function"),
|
|
):
|
|
classifier.decision_function(X.T)
|
|
except NotImplementedError:
|
|
pass
|
|
|
|
if hasattr(classifier, "predict_proba"):
|
|
# predict_proba agrees with predict
|
|
y_prob = classifier.predict_proba(X)
|
|
assert y_prob.shape == (n_samples, n_classes)
|
|
assert_array_equal(np.argmax(y_prob, axis=1), y_pred)
|
|
# check that probas for all classes sum to one
|
|
assert_array_almost_equal(np.sum(y_prob, axis=1), np.ones(n_samples))
|
|
if not tags["no_validation"]:
|
|
# raises error on malformed input for predict_proba
|
|
if tags["pairwise"]:
|
|
with raises(
|
|
ValueError,
|
|
err_msg=msg_pairwise.format(name, "predict_proba"),
|
|
):
|
|
classifier.predict_proba(X.reshape(-1, 1))
|
|
else:
|
|
with raises(
|
|
ValueError,
|
|
err_msg=msg.format(name, "predict_proba"),
|
|
):
|
|
classifier.predict_proba(X.T)
|
|
if hasattr(classifier, "predict_log_proba"):
|
|
# predict_log_proba is a transformation of predict_proba
|
|
y_log_prob = classifier.predict_log_proba(X)
|
|
assert_allclose(y_log_prob, np.log(y_prob), 8, atol=1e-9)
|
|
assert_array_equal(np.argsort(y_log_prob), np.argsort(y_prob))
|
|
|
|
|
|
def check_outlier_corruption(num_outliers, expected_outliers, decision):
|
|
# Check for deviation from the precise given contamination level that may
|
|
# be due to ties in the anomaly scores.
|
|
if num_outliers < expected_outliers:
|
|
start = num_outliers
|
|
end = expected_outliers + 1
|
|
else:
|
|
start = expected_outliers
|
|
end = num_outliers + 1
|
|
|
|
# ensure that all values in the 'critical area' are tied,
|
|
# leading to the observed discrepancy between provided
|
|
# and actual contamination levels.
|
|
sorted_decision = np.sort(decision)
|
|
msg = (
|
|
"The number of predicted outliers is not equal to the expected "
|
|
"number of outliers and this difference is not explained by the "
|
|
"number of ties in the decision_function values"
|
|
)
|
|
assert len(np.unique(sorted_decision[start:end])) == 1, msg
|
|
|
|
|
|
def check_outliers_train(name, estimator_orig, readonly_memmap=True):
|
|
n_samples = 300
|
|
X, _ = make_blobs(n_samples=n_samples, random_state=0)
|
|
X = shuffle(X, random_state=7)
|
|
|
|
if readonly_memmap:
|
|
X = create_memmap_backed_data(X)
|
|
|
|
n_samples, n_features = X.shape
|
|
estimator = clone(estimator_orig)
|
|
set_random_state(estimator)
|
|
|
|
# fit
|
|
estimator.fit(X)
|
|
# with lists
|
|
estimator.fit(X.tolist())
|
|
|
|
y_pred = estimator.predict(X)
|
|
assert y_pred.shape == (n_samples,)
|
|
assert y_pred.dtype.kind == "i"
|
|
assert_array_equal(np.unique(y_pred), np.array([-1, 1]))
|
|
|
|
decision = estimator.decision_function(X)
|
|
scores = estimator.score_samples(X)
|
|
for output in [decision, scores]:
|
|
assert output.dtype == np.dtype("float")
|
|
assert output.shape == (n_samples,)
|
|
|
|
# raises error on malformed input for predict
|
|
with raises(ValueError):
|
|
estimator.predict(X.T)
|
|
|
|
# decision_function agrees with predict
|
|
dec_pred = (decision >= 0).astype(int)
|
|
dec_pred[dec_pred == 0] = -1
|
|
assert_array_equal(dec_pred, y_pred)
|
|
|
|
# raises error on malformed input for decision_function
|
|
with raises(ValueError):
|
|
estimator.decision_function(X.T)
|
|
|
|
# decision_function is a translation of score_samples
|
|
y_dec = scores - estimator.offset_
|
|
assert_allclose(y_dec, decision)
|
|
|
|
# raises error on malformed input for score_samples
|
|
with raises(ValueError):
|
|
estimator.score_samples(X.T)
|
|
|
|
# contamination parameter (not for OneClassSVM which has the nu parameter)
|
|
if hasattr(estimator, "contamination") and not hasattr(estimator, "novelty"):
|
|
# proportion of outliers equal to contamination parameter when not
|
|
# set to 'auto'. This is true for the training set and cannot thus be
|
|
# checked as follows for estimators with a novelty parameter such as
|
|
# LocalOutlierFactor (tested in check_outliers_fit_predict)
|
|
expected_outliers = 30
|
|
contamination = expected_outliers / n_samples
|
|
estimator.set_params(contamination=contamination)
|
|
estimator.fit(X)
|
|
y_pred = estimator.predict(X)
|
|
|
|
num_outliers = np.sum(y_pred != 1)
|
|
# num_outliers should be equal to expected_outliers unless
|
|
# there are ties in the decision_function values. this can
|
|
# only be tested for estimators with a decision_function
|
|
# method, i.e. all estimators except LOF which is already
|
|
# excluded from this if branch.
|
|
if num_outliers != expected_outliers:
|
|
decision = estimator.decision_function(X)
|
|
check_outlier_corruption(num_outliers, expected_outliers, decision)
|
|
|
|
|
|
def check_outlier_contamination(name, estimator_orig):
|
|
# Check that the contamination parameter is in (0.0, 0.5] when it is an
|
|
# interval constraint.
|
|
|
|
if not hasattr(estimator_orig, "_parameter_constraints"):
|
|
# Only estimator implementing parameter constraints will be checked
|
|
return
|
|
|
|
if "contamination" not in estimator_orig._parameter_constraints:
|
|
return
|
|
|
|
contamination_constraints = estimator_orig._parameter_constraints["contamination"]
|
|
if not any([isinstance(c, Interval) for c in contamination_constraints]):
|
|
raise AssertionError(
|
|
"contamination constraints should contain a Real Interval constraint."
|
|
)
|
|
|
|
for constraint in contamination_constraints:
|
|
if isinstance(constraint, Interval):
|
|
assert (
|
|
constraint.type == Real
|
|
and constraint.left >= 0.0
|
|
and constraint.right <= 0.5
|
|
and (constraint.left > 0 or constraint.closed in {"right", "neither"})
|
|
), "contamination constraint should be an interval in (0, 0.5]"
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_classifiers_multilabel_representation_invariance(name, classifier_orig):
|
|
X, y = make_multilabel_classification(
|
|
n_samples=100,
|
|
n_features=2,
|
|
n_classes=5,
|
|
n_labels=3,
|
|
length=50,
|
|
allow_unlabeled=True,
|
|
random_state=0,
|
|
)
|
|
X = scale(X)
|
|
|
|
X_train, y_train = X[:80], y[:80]
|
|
X_test = X[80:]
|
|
|
|
y_train_list_of_lists = y_train.tolist()
|
|
y_train_list_of_arrays = list(y_train)
|
|
|
|
classifier = clone(classifier_orig)
|
|
set_random_state(classifier)
|
|
|
|
y_pred = classifier.fit(X_train, y_train).predict(X_test)
|
|
|
|
y_pred_list_of_lists = classifier.fit(X_train, y_train_list_of_lists).predict(
|
|
X_test
|
|
)
|
|
|
|
y_pred_list_of_arrays = classifier.fit(X_train, y_train_list_of_arrays).predict(
|
|
X_test
|
|
)
|
|
|
|
assert_array_equal(y_pred, y_pred_list_of_arrays)
|
|
assert_array_equal(y_pred, y_pred_list_of_lists)
|
|
|
|
assert y_pred.dtype == y_pred_list_of_arrays.dtype
|
|
assert y_pred.dtype == y_pred_list_of_lists.dtype
|
|
assert type(y_pred) == type(y_pred_list_of_arrays)
|
|
assert type(y_pred) == type(y_pred_list_of_lists)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_classifiers_multilabel_output_format_predict(name, classifier_orig):
|
|
"""Check the output of the `predict` method for classifiers supporting
|
|
multilabel-indicator targets."""
|
|
classifier = clone(classifier_orig)
|
|
set_random_state(classifier)
|
|
|
|
n_samples, test_size, n_outputs = 100, 25, 5
|
|
X, y = make_multilabel_classification(
|
|
n_samples=n_samples,
|
|
n_features=2,
|
|
n_classes=n_outputs,
|
|
n_labels=3,
|
|
length=50,
|
|
allow_unlabeled=True,
|
|
random_state=0,
|
|
)
|
|
X = scale(X)
|
|
|
|
X_train, X_test = X[:-test_size], X[-test_size:]
|
|
y_train, y_test = y[:-test_size], y[-test_size:]
|
|
classifier.fit(X_train, y_train)
|
|
|
|
response_method_name = "predict"
|
|
predict_method = getattr(classifier, response_method_name, None)
|
|
if predict_method is None:
|
|
raise SkipTest(f"{name} does not have a {response_method_name} method.")
|
|
|
|
y_pred = predict_method(X_test)
|
|
|
|
# y_pred.shape -> y_test.shape with the same dtype
|
|
assert isinstance(y_pred, np.ndarray), (
|
|
f"{name}.predict is expected to output a NumPy array. Got "
|
|
f"{type(y_pred)} instead."
|
|
)
|
|
assert y_pred.shape == y_test.shape, (
|
|
f"{name}.predict outputs a NumPy array of shape {y_pred.shape} "
|
|
f"instead of {y_test.shape}."
|
|
)
|
|
assert y_pred.dtype == y_test.dtype, (
|
|
f"{name}.predict does not output the same dtype than the targets. "
|
|
f"Got {y_pred.dtype} instead of {y_test.dtype}."
|
|
)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_classifiers_multilabel_output_format_predict_proba(name, classifier_orig):
|
|
"""Check the output of the `predict_proba` method for classifiers supporting
|
|
multilabel-indicator targets."""
|
|
classifier = clone(classifier_orig)
|
|
set_random_state(classifier)
|
|
|
|
n_samples, test_size, n_outputs = 100, 25, 5
|
|
X, y = make_multilabel_classification(
|
|
n_samples=n_samples,
|
|
n_features=2,
|
|
n_classes=n_outputs,
|
|
n_labels=3,
|
|
length=50,
|
|
allow_unlabeled=True,
|
|
random_state=0,
|
|
)
|
|
X = scale(X)
|
|
|
|
X_train, X_test = X[:-test_size], X[-test_size:]
|
|
y_train = y[:-test_size]
|
|
classifier.fit(X_train, y_train)
|
|
|
|
response_method_name = "predict_proba"
|
|
predict_proba_method = getattr(classifier, response_method_name, None)
|
|
if predict_proba_method is None:
|
|
raise SkipTest(f"{name} does not have a {response_method_name} method.")
|
|
|
|
y_pred = predict_proba_method(X_test)
|
|
|
|
# y_pred.shape -> 2 possibilities:
|
|
# - list of length n_outputs of shape (n_samples, 2);
|
|
# - ndarray of shape (n_samples, n_outputs).
|
|
# dtype should be floating
|
|
if isinstance(y_pred, list):
|
|
assert len(y_pred) == n_outputs, (
|
|
f"When {name}.predict_proba returns a list, the list should "
|
|
"be of length n_outputs and contain NumPy arrays. Got length "
|
|
f"of {len(y_pred)} instead of {n_outputs}."
|
|
)
|
|
for pred in y_pred:
|
|
assert pred.shape == (test_size, 2), (
|
|
f"When {name}.predict_proba returns a list, this list "
|
|
"should contain NumPy arrays of shape (n_samples, 2). Got "
|
|
f"NumPy arrays of shape {pred.shape} instead of "
|
|
f"{(test_size, 2)}."
|
|
)
|
|
assert pred.dtype.kind == "f", (
|
|
f"When {name}.predict_proba returns a list, it should "
|
|
"contain NumPy arrays with floating dtype. Got "
|
|
f"{pred.dtype} instead."
|
|
)
|
|
# check that we have the correct probabilities
|
|
err_msg = (
|
|
f"When {name}.predict_proba returns a list, each NumPy "
|
|
"array should contain probabilities for each class and "
|
|
"thus each row should sum to 1 (or close to 1 due to "
|
|
"numerical errors)."
|
|
)
|
|
assert_allclose(pred.sum(axis=1), 1, err_msg=err_msg)
|
|
elif isinstance(y_pred, np.ndarray):
|
|
assert y_pred.shape == (test_size, n_outputs), (
|
|
f"When {name}.predict_proba returns a NumPy array, the "
|
|
f"expected shape is (n_samples, n_outputs). Got {y_pred.shape}"
|
|
f" instead of {(test_size, n_outputs)}."
|
|
)
|
|
assert y_pred.dtype.kind == "f", (
|
|
f"When {name}.predict_proba returns a NumPy array, the "
|
|
f"expected data type is floating. Got {y_pred.dtype} instead."
|
|
)
|
|
err_msg = (
|
|
f"When {name}.predict_proba returns a NumPy array, this array "
|
|
"is expected to provide probabilities of the positive class "
|
|
"and should therefore contain values between 0 and 1."
|
|
)
|
|
assert_array_less(0, y_pred, err_msg=err_msg)
|
|
assert_array_less(y_pred, 1, err_msg=err_msg)
|
|
else:
|
|
raise ValueError(
|
|
f"Unknown returned type {type(y_pred)} by {name}."
|
|
"predict_proba. A list or a Numpy array is expected."
|
|
)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_classifiers_multilabel_output_format_decision_function(name, classifier_orig):
|
|
"""Check the output of the `decision_function` method for classifiers supporting
|
|
multilabel-indicator targets."""
|
|
classifier = clone(classifier_orig)
|
|
set_random_state(classifier)
|
|
|
|
n_samples, test_size, n_outputs = 100, 25, 5
|
|
X, y = make_multilabel_classification(
|
|
n_samples=n_samples,
|
|
n_features=2,
|
|
n_classes=n_outputs,
|
|
n_labels=3,
|
|
length=50,
|
|
allow_unlabeled=True,
|
|
random_state=0,
|
|
)
|
|
X = scale(X)
|
|
|
|
X_train, X_test = X[:-test_size], X[-test_size:]
|
|
y_train = y[:-test_size]
|
|
classifier.fit(X_train, y_train)
|
|
|
|
response_method_name = "decision_function"
|
|
decision_function_method = getattr(classifier, response_method_name, None)
|
|
if decision_function_method is None:
|
|
raise SkipTest(f"{name} does not have a {response_method_name} method.")
|
|
|
|
y_pred = decision_function_method(X_test)
|
|
|
|
# y_pred.shape -> y_test.shape with floating dtype
|
|
assert isinstance(y_pred, np.ndarray), (
|
|
f"{name}.decision_function is expected to output a NumPy array."
|
|
f" Got {type(y_pred)} instead."
|
|
)
|
|
assert y_pred.shape == (test_size, n_outputs), (
|
|
f"{name}.decision_function is expected to provide a NumPy array "
|
|
f"of shape (n_samples, n_outputs). Got {y_pred.shape} instead of "
|
|
f"{(test_size, n_outputs)}."
|
|
)
|
|
assert y_pred.dtype.kind == "f", (
|
|
f"{name}.decision_function is expected to output a floating dtype."
|
|
f" Got {y_pred.dtype} instead."
|
|
)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_get_feature_names_out_error(name, estimator_orig):
|
|
"""Check the error raised by get_feature_names_out when called before fit.
|
|
|
|
Unfitted estimators with get_feature_names_out should raise a NotFittedError.
|
|
"""
|
|
|
|
estimator = clone(estimator_orig)
|
|
err_msg = (
|
|
f"Estimator {name} should have raised a NotFitted error when fit is called"
|
|
" before get_feature_names_out"
|
|
)
|
|
with raises(NotFittedError, err_msg=err_msg):
|
|
estimator.get_feature_names_out()
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_estimators_fit_returns_self(name, estimator_orig, readonly_memmap=False):
|
|
"""Check if self is returned when calling fit."""
|
|
X, y = make_blobs(random_state=0, n_samples=21)
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
|
|
estimator = clone(estimator_orig)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
if readonly_memmap:
|
|
X, y = create_memmap_backed_data([X, y])
|
|
|
|
set_random_state(estimator)
|
|
assert estimator.fit(X, y) is estimator
|
|
|
|
|
|
@ignore_warnings
|
|
def check_estimators_unfitted(name, estimator_orig):
|
|
"""Check that predict raises an exception in an unfitted estimator.
|
|
|
|
Unfitted estimators should raise a NotFittedError.
|
|
"""
|
|
# Common test for Regressors, Classifiers and Outlier detection estimators
|
|
X, y = _regression_dataset()
|
|
|
|
estimator = clone(estimator_orig)
|
|
for method in (
|
|
"decision_function",
|
|
"predict",
|
|
"predict_proba",
|
|
"predict_log_proba",
|
|
):
|
|
if hasattr(estimator, method):
|
|
with raises(NotFittedError):
|
|
getattr(estimator, method)(X)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_supervised_y_2d(name, estimator_orig):
|
|
tags = _safe_tags(estimator_orig)
|
|
rnd = np.random.RandomState(0)
|
|
n_samples = 30
|
|
X = _enforce_estimator_tags_X(estimator_orig, rnd.uniform(size=(n_samples, 3)))
|
|
y = np.arange(n_samples) % 3
|
|
y = _enforce_estimator_tags_y(estimator_orig, y)
|
|
estimator = clone(estimator_orig)
|
|
set_random_state(estimator)
|
|
# fit
|
|
estimator.fit(X, y)
|
|
y_pred = estimator.predict(X)
|
|
|
|
set_random_state(estimator)
|
|
# Check that when a 2D y is given, a DataConversionWarning is
|
|
# raised
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter("always", DataConversionWarning)
|
|
warnings.simplefilter("ignore", RuntimeWarning)
|
|
estimator.fit(X, y[:, np.newaxis])
|
|
y_pred_2d = estimator.predict(X)
|
|
msg = "expected 1 DataConversionWarning, got: %s" % ", ".join(
|
|
[str(w_x) for w_x in w]
|
|
)
|
|
if not tags["multioutput"]:
|
|
# check that we warned if we don't support multi-output
|
|
assert len(w) > 0, msg
|
|
assert (
|
|
"DataConversionWarning('A column-vector y"
|
|
" was passed when a 1d array was expected"
|
|
in msg
|
|
)
|
|
assert_allclose(y_pred.ravel(), y_pred_2d.ravel())
|
|
|
|
|
|
@ignore_warnings
|
|
def check_classifiers_predictions(X, y, name, classifier_orig):
|
|
classes = np.unique(y)
|
|
classifier = clone(classifier_orig)
|
|
if name == "BernoulliNB":
|
|
X = X > X.mean()
|
|
set_random_state(classifier)
|
|
|
|
classifier.fit(X, y)
|
|
y_pred = classifier.predict(X)
|
|
|
|
if hasattr(classifier, "decision_function"):
|
|
decision = classifier.decision_function(X)
|
|
assert isinstance(decision, np.ndarray)
|
|
if len(classes) == 2:
|
|
dec_pred = (decision.ravel() > 0).astype(int)
|
|
dec_exp = classifier.classes_[dec_pred]
|
|
assert_array_equal(
|
|
dec_exp,
|
|
y_pred,
|
|
err_msg=(
|
|
"decision_function does not match "
|
|
"classifier for %r: expected '%s', got '%s'"
|
|
)
|
|
% (
|
|
classifier,
|
|
", ".join(map(str, dec_exp)),
|
|
", ".join(map(str, y_pred)),
|
|
),
|
|
)
|
|
elif getattr(classifier, "decision_function_shape", "ovr") == "ovr":
|
|
decision_y = np.argmax(decision, axis=1).astype(int)
|
|
y_exp = classifier.classes_[decision_y]
|
|
assert_array_equal(
|
|
y_exp,
|
|
y_pred,
|
|
err_msg=(
|
|
"decision_function does not match "
|
|
"classifier for %r: expected '%s', got '%s'"
|
|
)
|
|
% (
|
|
classifier,
|
|
", ".join(map(str, y_exp)),
|
|
", ".join(map(str, y_pred)),
|
|
),
|
|
)
|
|
|
|
# training set performance
|
|
if name != "ComplementNB":
|
|
# This is a pathological data set for ComplementNB.
|
|
# For some specific cases 'ComplementNB' predicts less classes
|
|
# than expected
|
|
assert_array_equal(np.unique(y), np.unique(y_pred))
|
|
assert_array_equal(
|
|
classes,
|
|
classifier.classes_,
|
|
err_msg="Unexpected classes_ attribute for %r: expected '%s', got '%s'"
|
|
% (
|
|
classifier,
|
|
", ".join(map(str, classes)),
|
|
", ".join(map(str, classifier.classes_)),
|
|
),
|
|
)
|
|
|
|
|
|
def _choose_check_classifiers_labels(name, y, y_names):
|
|
# Semisupervised classifiers use -1 as the indicator for an unlabeled
|
|
# sample.
|
|
return (
|
|
y
|
|
if name in ["LabelPropagation", "LabelSpreading", "SelfTrainingClassifier"]
|
|
else y_names
|
|
)
|
|
|
|
|
|
def check_classifiers_classes(name, classifier_orig):
|
|
X_multiclass, y_multiclass = make_blobs(
|
|
n_samples=30, random_state=0, cluster_std=0.1
|
|
)
|
|
X_multiclass, y_multiclass = shuffle(X_multiclass, y_multiclass, random_state=7)
|
|
X_multiclass = StandardScaler().fit_transform(X_multiclass)
|
|
|
|
X_binary = X_multiclass[y_multiclass != 2]
|
|
y_binary = y_multiclass[y_multiclass != 2]
|
|
|
|
X_multiclass = _enforce_estimator_tags_X(classifier_orig, X_multiclass)
|
|
X_binary = _enforce_estimator_tags_X(classifier_orig, X_binary)
|
|
|
|
labels_multiclass = ["one", "two", "three"]
|
|
labels_binary = ["one", "two"]
|
|
|
|
y_names_multiclass = np.take(labels_multiclass, y_multiclass)
|
|
y_names_binary = np.take(labels_binary, y_binary)
|
|
|
|
problems = [(X_binary, y_binary, y_names_binary)]
|
|
if not _safe_tags(classifier_orig, key="binary_only"):
|
|
problems.append((X_multiclass, y_multiclass, y_names_multiclass))
|
|
|
|
for X, y, y_names in problems:
|
|
for y_names_i in [y_names, y_names.astype("O")]:
|
|
y_ = _choose_check_classifiers_labels(name, y, y_names_i)
|
|
check_classifiers_predictions(X, y_, name, classifier_orig)
|
|
|
|
labels_binary = [-1, 1]
|
|
y_names_binary = np.take(labels_binary, y_binary)
|
|
y_binary = _choose_check_classifiers_labels(name, y_binary, y_names_binary)
|
|
check_classifiers_predictions(X_binary, y_binary, name, classifier_orig)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_regressors_int(name, regressor_orig):
|
|
X, _ = _regression_dataset()
|
|
X = _enforce_estimator_tags_X(regressor_orig, X[:50])
|
|
rnd = np.random.RandomState(0)
|
|
y = rnd.randint(3, size=X.shape[0])
|
|
y = _enforce_estimator_tags_y(regressor_orig, y)
|
|
rnd = np.random.RandomState(0)
|
|
# separate estimators to control random seeds
|
|
regressor_1 = clone(regressor_orig)
|
|
regressor_2 = clone(regressor_orig)
|
|
set_random_state(regressor_1)
|
|
set_random_state(regressor_2)
|
|
|
|
if name in CROSS_DECOMPOSITION:
|
|
y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))])
|
|
y_ = y_.T
|
|
else:
|
|
y_ = y
|
|
|
|
# fit
|
|
regressor_1.fit(X, y_)
|
|
pred1 = regressor_1.predict(X)
|
|
regressor_2.fit(X, y_.astype(float))
|
|
pred2 = regressor_2.predict(X)
|
|
assert_allclose(pred1, pred2, atol=1e-2, err_msg=name)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_regressors_train(
|
|
name, regressor_orig, readonly_memmap=False, X_dtype=np.float64
|
|
):
|
|
X, y = _regression_dataset()
|
|
X = X.astype(X_dtype)
|
|
y = scale(y) # X is already scaled
|
|
regressor = clone(regressor_orig)
|
|
X = _enforce_estimator_tags_X(regressor, X)
|
|
y = _enforce_estimator_tags_y(regressor, y)
|
|
if name in CROSS_DECOMPOSITION:
|
|
rnd = np.random.RandomState(0)
|
|
y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))])
|
|
y_ = y_.T
|
|
else:
|
|
y_ = y
|
|
|
|
if readonly_memmap:
|
|
X, y, y_ = create_memmap_backed_data([X, y, y_])
|
|
|
|
if not hasattr(regressor, "alphas") and hasattr(regressor, "alpha"):
|
|
# linear regressors need to set alpha, but not generalized CV ones
|
|
regressor.alpha = 0.01
|
|
if name == "PassiveAggressiveRegressor":
|
|
regressor.C = 0.01
|
|
|
|
# raises error on malformed input for fit
|
|
with raises(
|
|
ValueError,
|
|
err_msg=(
|
|
f"The classifier {name} does not raise an error when "
|
|
"incorrect/malformed input data for fit is passed. The number of "
|
|
"training examples is not the same as the number of labels. Perhaps "
|
|
"use check_X_y in fit."
|
|
),
|
|
):
|
|
regressor.fit(X, y[:-1])
|
|
# fit
|
|
set_random_state(regressor)
|
|
regressor.fit(X, y_)
|
|
regressor.fit(X.tolist(), y_.tolist())
|
|
y_pred = regressor.predict(X)
|
|
assert y_pred.shape == y_.shape
|
|
|
|
# TODO: find out why PLS and CCA fail. RANSAC is random
|
|
# and furthermore assumes the presence of outliers, hence
|
|
# skipped
|
|
if not _safe_tags(regressor, key="poor_score"):
|
|
assert regressor.score(X, y_) > 0.5
|
|
|
|
|
|
@ignore_warnings
|
|
def check_regressors_no_decision_function(name, regressor_orig):
|
|
# check that regressors don't have a decision_function, predict_proba, or
|
|
# predict_log_proba method.
|
|
rng = np.random.RandomState(0)
|
|
regressor = clone(regressor_orig)
|
|
|
|
X = rng.normal(size=(10, 4))
|
|
X = _enforce_estimator_tags_X(regressor_orig, X)
|
|
y = _enforce_estimator_tags_y(regressor, X[:, 0])
|
|
|
|
regressor.fit(X, y)
|
|
funcs = ["decision_function", "predict_proba", "predict_log_proba"]
|
|
for func_name in funcs:
|
|
assert not hasattr(regressor, func_name)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_class_weight_classifiers(name, classifier_orig):
|
|
|
|
if _safe_tags(classifier_orig, key="binary_only"):
|
|
problems = [2]
|
|
else:
|
|
problems = [2, 3]
|
|
|
|
for n_centers in problems:
|
|
# create a very noisy dataset
|
|
X, y = make_blobs(centers=n_centers, random_state=0, cluster_std=20)
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X, y, test_size=0.5, random_state=0
|
|
)
|
|
|
|
# can't use gram_if_pairwise() here, setting up gram matrix manually
|
|
if _safe_tags(classifier_orig, key="pairwise"):
|
|
X_test = rbf_kernel(X_test, X_train)
|
|
X_train = rbf_kernel(X_train, X_train)
|
|
|
|
n_centers = len(np.unique(y_train))
|
|
|
|
if n_centers == 2:
|
|
class_weight = {0: 1000, 1: 0.0001}
|
|
else:
|
|
class_weight = {0: 1000, 1: 0.0001, 2: 0.0001}
|
|
|
|
classifier = clone(classifier_orig).set_params(class_weight=class_weight)
|
|
if hasattr(classifier, "n_iter"):
|
|
classifier.set_params(n_iter=100)
|
|
if hasattr(classifier, "max_iter"):
|
|
classifier.set_params(max_iter=1000)
|
|
if hasattr(classifier, "min_weight_fraction_leaf"):
|
|
classifier.set_params(min_weight_fraction_leaf=0.01)
|
|
if hasattr(classifier, "n_iter_no_change"):
|
|
classifier.set_params(n_iter_no_change=20)
|
|
|
|
set_random_state(classifier)
|
|
classifier.fit(X_train, y_train)
|
|
y_pred = classifier.predict(X_test)
|
|
# XXX: Generally can use 0.89 here. On Windows, LinearSVC gets
|
|
# 0.88 (Issue #9111)
|
|
if not _safe_tags(classifier_orig, key="poor_score"):
|
|
assert np.mean(y_pred == 0) > 0.87
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_class_weight_balanced_classifiers(
|
|
name, classifier_orig, X_train, y_train, X_test, y_test, weights
|
|
):
|
|
classifier = clone(classifier_orig)
|
|
if hasattr(classifier, "n_iter"):
|
|
classifier.set_params(n_iter=100)
|
|
if hasattr(classifier, "max_iter"):
|
|
classifier.set_params(max_iter=1000)
|
|
|
|
set_random_state(classifier)
|
|
classifier.fit(X_train, y_train)
|
|
y_pred = classifier.predict(X_test)
|
|
|
|
classifier.set_params(class_weight="balanced")
|
|
classifier.fit(X_train, y_train)
|
|
y_pred_balanced = classifier.predict(X_test)
|
|
assert f1_score(y_test, y_pred_balanced, average="weighted") > f1_score(
|
|
y_test, y_pred, average="weighted"
|
|
)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_class_weight_balanced_linear_classifier(name, Classifier):
|
|
"""Test class weights with non-contiguous class labels."""
|
|
# this is run on classes, not instances, though this should be changed
|
|
X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
|
|
y = np.array([1, 1, 1, -1, -1])
|
|
|
|
classifier = Classifier()
|
|
|
|
if hasattr(classifier, "n_iter"):
|
|
# This is a very small dataset, default n_iter are likely to prevent
|
|
# convergence
|
|
classifier.set_params(n_iter=1000)
|
|
if hasattr(classifier, "max_iter"):
|
|
classifier.set_params(max_iter=1000)
|
|
if hasattr(classifier, "cv"):
|
|
classifier.set_params(cv=3)
|
|
set_random_state(classifier)
|
|
|
|
# Let the model compute the class frequencies
|
|
classifier.set_params(class_weight="balanced")
|
|
coef_balanced = classifier.fit(X, y).coef_.copy()
|
|
|
|
# Count each label occurrence to reweight manually
|
|
n_samples = len(y)
|
|
n_classes = float(len(np.unique(y)))
|
|
|
|
class_weight = {
|
|
1: n_samples / (np.sum(y == 1) * n_classes),
|
|
-1: n_samples / (np.sum(y == -1) * n_classes),
|
|
}
|
|
classifier.set_params(class_weight=class_weight)
|
|
coef_manual = classifier.fit(X, y).coef_.copy()
|
|
|
|
assert_allclose(
|
|
coef_balanced,
|
|
coef_manual,
|
|
err_msg="Classifier %s is not computing class_weight=balanced properly." % name,
|
|
)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_estimators_overwrite_params(name, estimator_orig):
|
|
X, y = make_blobs(random_state=0, n_samples=21)
|
|
X = _enforce_estimator_tags_X(estimator_orig, X, kernel=rbf_kernel)
|
|
estimator = clone(estimator_orig)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
set_random_state(estimator)
|
|
|
|
# Make a physical copy of the original estimator parameters before fitting.
|
|
params = estimator.get_params()
|
|
original_params = deepcopy(params)
|
|
|
|
# Fit the model
|
|
estimator.fit(X, y)
|
|
|
|
# Compare the state of the model parameters with the original parameters
|
|
new_params = estimator.get_params()
|
|
for param_name, original_value in original_params.items():
|
|
new_value = new_params[param_name]
|
|
|
|
# We should never change or mutate the internal state of input
|
|
# parameters by default. To check this we use the joblib.hash function
|
|
# that introspects recursively any subobjects to compute a checksum.
|
|
# The only exception to this rule of immutable constructor parameters
|
|
# is possible RandomState instance but in this check we explicitly
|
|
# fixed the random_state params recursively to be integer seeds.
|
|
assert joblib.hash(new_value) == joblib.hash(original_value), (
|
|
"Estimator %s should not change or mutate "
|
|
" the parameter %s from %s to %s during fit."
|
|
% (name, param_name, original_value, new_value)
|
|
)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_no_attributes_set_in_init(name, estimator_orig):
|
|
"""Check setting during init."""
|
|
try:
|
|
# Clone fails if the estimator does not store
|
|
# all parameters as an attribute during init
|
|
estimator = clone(estimator_orig)
|
|
except AttributeError:
|
|
raise AttributeError(
|
|
f"Estimator {name} should store all parameters as an attribute during init."
|
|
)
|
|
|
|
if hasattr(type(estimator).__init__, "deprecated_original"):
|
|
return
|
|
|
|
init_params = _get_args(type(estimator).__init__)
|
|
if IS_PYPY:
|
|
# __init__ signature has additional objects in PyPy
|
|
for key in ["obj"]:
|
|
if key in init_params:
|
|
init_params.remove(key)
|
|
parents_init_params = [
|
|
param
|
|
for params_parent in (_get_args(parent) for parent in type(estimator).__mro__)
|
|
for param in params_parent
|
|
]
|
|
|
|
# Test for no setting apart from parameters during init
|
|
invalid_attr = set(vars(estimator)) - set(init_params) - set(parents_init_params)
|
|
assert not invalid_attr, (
|
|
"Estimator %s should not set any attribute apart"
|
|
" from parameters during init. Found attributes %s."
|
|
% (name, sorted(invalid_attr))
|
|
)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_sparsify_coefficients(name, estimator_orig):
|
|
X = np.array(
|
|
[
|
|
[-2, -1],
|
|
[-1, -1],
|
|
[-1, -2],
|
|
[1, 1],
|
|
[1, 2],
|
|
[2, 1],
|
|
[-1, -2],
|
|
[2, 2],
|
|
[-2, -2],
|
|
]
|
|
)
|
|
y = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3])
|
|
y = _enforce_estimator_tags_y(estimator_orig, y)
|
|
est = clone(estimator_orig)
|
|
|
|
est.fit(X, y)
|
|
pred_orig = est.predict(X)
|
|
|
|
# test sparsify with dense inputs
|
|
est.sparsify()
|
|
assert sparse.issparse(est.coef_)
|
|
pred = est.predict(X)
|
|
assert_array_equal(pred, pred_orig)
|
|
|
|
# pickle and unpickle with sparse coef_
|
|
est = pickle.loads(pickle.dumps(est))
|
|
assert sparse.issparse(est.coef_)
|
|
pred = est.predict(X)
|
|
assert_array_equal(pred, pred_orig)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_classifier_data_not_an_array(name, estimator_orig):
|
|
X = np.array(
|
|
[
|
|
[3, 0],
|
|
[0, 1],
|
|
[0, 2],
|
|
[1, 1],
|
|
[1, 2],
|
|
[2, 1],
|
|
[0, 3],
|
|
[1, 0],
|
|
[2, 0],
|
|
[4, 4],
|
|
[2, 3],
|
|
[3, 2],
|
|
]
|
|
)
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
y = np.array([1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2])
|
|
y = _enforce_estimator_tags_y(estimator_orig, y)
|
|
for obj_type in ["NotAnArray", "PandasDataframe"]:
|
|
check_estimators_data_not_an_array(name, estimator_orig, X, y, obj_type)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_regressor_data_not_an_array(name, estimator_orig):
|
|
X, y = _regression_dataset()
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
y = _enforce_estimator_tags_y(estimator_orig, y)
|
|
for obj_type in ["NotAnArray", "PandasDataframe"]:
|
|
check_estimators_data_not_an_array(name, estimator_orig, X, y, obj_type)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_estimators_data_not_an_array(name, estimator_orig, X, y, obj_type):
|
|
if name in CROSS_DECOMPOSITION:
|
|
raise SkipTest(
|
|
"Skipping check_estimators_data_not_an_array "
|
|
"for cross decomposition module as estimators "
|
|
"are not deterministic."
|
|
)
|
|
# separate estimators to control random seeds
|
|
estimator_1 = clone(estimator_orig)
|
|
estimator_2 = clone(estimator_orig)
|
|
set_random_state(estimator_1)
|
|
set_random_state(estimator_2)
|
|
|
|
if obj_type not in ["NotAnArray", "PandasDataframe"]:
|
|
raise ValueError("Data type {0} not supported".format(obj_type))
|
|
|
|
if obj_type == "NotAnArray":
|
|
y_ = _NotAnArray(np.asarray(y))
|
|
X_ = _NotAnArray(np.asarray(X))
|
|
else:
|
|
# Here pandas objects (Series and DataFrame) are tested explicitly
|
|
# because some estimators may handle them (especially their indexing)
|
|
# specially.
|
|
try:
|
|
import pandas as pd
|
|
|
|
y_ = np.asarray(y)
|
|
if y_.ndim == 1:
|
|
y_ = pd.Series(y_)
|
|
else:
|
|
y_ = pd.DataFrame(y_)
|
|
X_ = pd.DataFrame(np.asarray(X))
|
|
|
|
except ImportError:
|
|
raise SkipTest(
|
|
"pandas is not installed: not checking estimators for pandas objects."
|
|
)
|
|
|
|
# fit
|
|
estimator_1.fit(X_, y_)
|
|
pred1 = estimator_1.predict(X_)
|
|
estimator_2.fit(X, y)
|
|
pred2 = estimator_2.predict(X)
|
|
assert_allclose(pred1, pred2, atol=1e-2, err_msg=name)
|
|
|
|
|
|
def check_parameters_default_constructible(name, Estimator):
|
|
# test default-constructibility
|
|
# get rid of deprecation warnings
|
|
|
|
Estimator = Estimator.__class__
|
|
|
|
with ignore_warnings(category=FutureWarning):
|
|
estimator = _construct_instance(Estimator)
|
|
# test cloning
|
|
clone(estimator)
|
|
# test __repr__
|
|
repr(estimator)
|
|
# test that set_params returns self
|
|
assert estimator.set_params() is estimator
|
|
|
|
# test if init does nothing but set parameters
|
|
# this is important for grid_search etc.
|
|
# We get the default parameters from init and then
|
|
# compare these against the actual values of the attributes.
|
|
|
|
# this comes from getattr. Gets rid of deprecation decorator.
|
|
init = getattr(estimator.__init__, "deprecated_original", estimator.__init__)
|
|
|
|
try:
|
|
|
|
def param_filter(p):
|
|
"""Identify hyper parameters of an estimator."""
|
|
return (
|
|
p.name != "self"
|
|
and p.kind != p.VAR_KEYWORD
|
|
and p.kind != p.VAR_POSITIONAL
|
|
)
|
|
|
|
init_params = [
|
|
p for p in signature(init).parameters.values() if param_filter(p)
|
|
]
|
|
|
|
except (TypeError, ValueError):
|
|
# init is not a python function.
|
|
# true for mixins
|
|
return
|
|
params = estimator.get_params()
|
|
# they can need a non-default argument
|
|
init_params = init_params[len(getattr(estimator, "_required_parameters", [])) :]
|
|
|
|
for init_param in init_params:
|
|
assert (
|
|
init_param.default != init_param.empty
|
|
), "parameter %s for %s has no default value" % (
|
|
init_param.name,
|
|
type(estimator).__name__,
|
|
)
|
|
allowed_types = {
|
|
str,
|
|
int,
|
|
float,
|
|
bool,
|
|
tuple,
|
|
type(None),
|
|
type,
|
|
}
|
|
# Any numpy numeric such as np.int32.
|
|
allowed_types.update(np.core.numerictypes.allTypes.values())
|
|
|
|
allowed_value = (
|
|
type(init_param.default) in allowed_types
|
|
or
|
|
# Although callables are mutable, we accept them as argument
|
|
# default value and trust that neither the implementation of
|
|
# the callable nor of the estimator changes the state of the
|
|
# callable.
|
|
callable(init_param.default)
|
|
)
|
|
|
|
assert allowed_value, (
|
|
f"Parameter '{init_param.name}' of estimator "
|
|
f"'{Estimator.__name__}' is of type "
|
|
f"{type(init_param.default).__name__} which is not allowed. "
|
|
f"'{init_param.name}' must be a callable or must be of type "
|
|
f"{set(type.__name__ for type in allowed_types)}."
|
|
)
|
|
if init_param.name not in params.keys():
|
|
# deprecated parameter, not in get_params
|
|
assert init_param.default is None, (
|
|
f"Estimator parameter '{init_param.name}' of estimator "
|
|
f"'{Estimator.__name__}' is not returned by get_params. "
|
|
"If it is deprecated, set its default value to None."
|
|
)
|
|
continue
|
|
|
|
param_value = params[init_param.name]
|
|
if isinstance(param_value, np.ndarray):
|
|
assert_array_equal(param_value, init_param.default)
|
|
else:
|
|
failure_text = (
|
|
f"Parameter {init_param.name} was mutated on init. All "
|
|
"parameters must be stored unchanged."
|
|
)
|
|
if is_scalar_nan(param_value):
|
|
# Allows to set default parameters to np.nan
|
|
assert param_value is init_param.default, failure_text
|
|
else:
|
|
assert param_value == init_param.default, failure_text
|
|
|
|
|
|
def _enforce_estimator_tags_y(estimator, y):
|
|
# Estimators with a `requires_positive_y` tag only accept strictly positive
|
|
# data
|
|
if _safe_tags(estimator, key="requires_positive_y"):
|
|
# Create strictly positive y. The minimal increment above 0 is 1, as
|
|
# y could be of integer dtype.
|
|
y += 1 + abs(y.min())
|
|
# Estimators with a `binary_only` tag only accept up to two unique y values
|
|
if _safe_tags(estimator, key="binary_only") and y.size > 0:
|
|
y = np.where(y == y.flat[0], y, y.flat[0] + 1)
|
|
# Estimators in mono_output_task_error raise ValueError if y is of 1-D
|
|
# Convert into a 2-D y for those estimators.
|
|
if _safe_tags(estimator, key="multioutput_only"):
|
|
return np.reshape(y, (-1, 1))
|
|
return y
|
|
|
|
|
|
def _enforce_estimator_tags_X(estimator, X, kernel=linear_kernel):
|
|
# Estimators with `1darray` in `X_types` tag only accept
|
|
# X of shape (`n_samples`,)
|
|
if "1darray" in _safe_tags(estimator, key="X_types"):
|
|
X = X[:, 0]
|
|
# Estimators with a `requires_positive_X` tag only accept
|
|
# strictly positive data
|
|
if _safe_tags(estimator, key="requires_positive_X"):
|
|
X = X - X.min()
|
|
if "categorical" in _safe_tags(estimator, key="X_types"):
|
|
X = (X - X.min()).astype(np.int32)
|
|
|
|
if estimator.__class__.__name__ == "SkewedChi2Sampler":
|
|
# SkewedChi2Sampler requires X > -skewdness in transform
|
|
X = X - X.min()
|
|
|
|
# Pairwise estimators only accept
|
|
# X of shape (`n_samples`, `n_samples`)
|
|
if _is_pairwise_metric(estimator):
|
|
X = pairwise_distances(X, metric="euclidean")
|
|
elif _safe_tags(estimator, key="pairwise"):
|
|
X = kernel(X, X)
|
|
return X
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_non_transformer_estimators_n_iter(name, estimator_orig):
|
|
# Test that estimators that are not transformers with a parameter
|
|
# max_iter, return the attribute of n_iter_ at least 1.
|
|
|
|
# These models are dependent on external solvers like
|
|
# libsvm and accessing the iter parameter is non-trivial.
|
|
# SelfTrainingClassifier does not perform an iteration if all samples are
|
|
# labeled, hence n_iter_ = 0 is valid.
|
|
not_run_check_n_iter = [
|
|
"Ridge",
|
|
"RidgeClassifier",
|
|
"RandomizedLasso",
|
|
"LogisticRegressionCV",
|
|
"LinearSVC",
|
|
"LogisticRegression",
|
|
"SelfTrainingClassifier",
|
|
]
|
|
|
|
# Tested in test_transformer_n_iter
|
|
not_run_check_n_iter += CROSS_DECOMPOSITION
|
|
if name in not_run_check_n_iter:
|
|
return
|
|
|
|
# LassoLars stops early for the default alpha=1.0 the iris dataset.
|
|
if name == "LassoLars":
|
|
estimator = clone(estimator_orig).set_params(alpha=0.0)
|
|
else:
|
|
estimator = clone(estimator_orig)
|
|
if hasattr(estimator, "max_iter"):
|
|
iris = load_iris()
|
|
X, y_ = iris.data, iris.target
|
|
y_ = _enforce_estimator_tags_y(estimator, y_)
|
|
|
|
set_random_state(estimator, 0)
|
|
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
|
|
estimator.fit(X, y_)
|
|
|
|
assert np.all(estimator.n_iter_ >= 1)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_transformer_n_iter(name, estimator_orig):
|
|
# Test that transformers with a parameter max_iter, return the
|
|
# attribute of n_iter_ at least 1.
|
|
estimator = clone(estimator_orig)
|
|
if hasattr(estimator, "max_iter"):
|
|
if name in CROSS_DECOMPOSITION:
|
|
# Check using default data
|
|
X = [[0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [2.0, 5.0, 4.0]]
|
|
y_ = [[0.1, -0.2], [0.9, 1.1], [0.1, -0.5], [0.3, -0.2]]
|
|
|
|
else:
|
|
X, y_ = make_blobs(
|
|
n_samples=30,
|
|
centers=[[0, 0, 0], [1, 1, 1]],
|
|
random_state=0,
|
|
n_features=2,
|
|
cluster_std=0.1,
|
|
)
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
set_random_state(estimator, 0)
|
|
estimator.fit(X, y_)
|
|
|
|
# These return a n_iter per component.
|
|
if name in CROSS_DECOMPOSITION:
|
|
for iter_ in estimator.n_iter_:
|
|
assert iter_ >= 1
|
|
else:
|
|
assert estimator.n_iter_ >= 1
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_get_params_invariance(name, estimator_orig):
|
|
# Checks if get_params(deep=False) is a subset of get_params(deep=True)
|
|
e = clone(estimator_orig)
|
|
|
|
shallow_params = e.get_params(deep=False)
|
|
deep_params = e.get_params(deep=True)
|
|
|
|
assert all(item in deep_params.items() for item in shallow_params.items())
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_set_params(name, estimator_orig):
|
|
# Check that get_params() returns the same thing
|
|
# before and after set_params() with some fuzz
|
|
estimator = clone(estimator_orig)
|
|
|
|
orig_params = estimator.get_params(deep=False)
|
|
msg = "get_params result does not match what was passed to set_params"
|
|
|
|
estimator.set_params(**orig_params)
|
|
curr_params = estimator.get_params(deep=False)
|
|
assert set(orig_params.keys()) == set(curr_params.keys()), msg
|
|
for k, v in curr_params.items():
|
|
assert orig_params[k] is v, msg
|
|
|
|
# some fuzz values
|
|
test_values = [-np.inf, np.inf, None]
|
|
|
|
test_params = deepcopy(orig_params)
|
|
for param_name in orig_params.keys():
|
|
default_value = orig_params[param_name]
|
|
for value in test_values:
|
|
test_params[param_name] = value
|
|
try:
|
|
estimator.set_params(**test_params)
|
|
except (TypeError, ValueError) as e:
|
|
e_type = e.__class__.__name__
|
|
# Exception occurred, possibly parameter validation
|
|
warnings.warn(
|
|
"{0} occurred during set_params of param {1} on "
|
|
"{2}. It is recommended to delay parameter "
|
|
"validation until fit.".format(e_type, param_name, name)
|
|
)
|
|
|
|
change_warning_msg = (
|
|
"Estimator's parameters changed after set_params raised {}".format(
|
|
e_type
|
|
)
|
|
)
|
|
params_before_exception = curr_params
|
|
curr_params = estimator.get_params(deep=False)
|
|
try:
|
|
assert set(params_before_exception.keys()) == set(
|
|
curr_params.keys()
|
|
)
|
|
for k, v in curr_params.items():
|
|
assert params_before_exception[k] is v
|
|
except AssertionError:
|
|
warnings.warn(change_warning_msg)
|
|
else:
|
|
curr_params = estimator.get_params(deep=False)
|
|
assert set(test_params.keys()) == set(curr_params.keys()), msg
|
|
for k, v in curr_params.items():
|
|
assert test_params[k] is v, msg
|
|
test_params[param_name] = default_value
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_classifiers_regression_target(name, estimator_orig):
|
|
# Check if classifier throws an exception when fed regression targets
|
|
|
|
X, y = _regression_dataset()
|
|
|
|
X = _enforce_estimator_tags_X(estimator_orig, X)
|
|
e = clone(estimator_orig)
|
|
msg = "Unknown label type: "
|
|
if not _safe_tags(e, key="no_validation"):
|
|
with raises(ValueError, match=msg):
|
|
e.fit(X, y)
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_decision_proba_consistency(name, estimator_orig):
|
|
# Check whether an estimator having both decision_function and
|
|
# predict_proba methods has outputs with perfect rank correlation.
|
|
|
|
centers = [(2, 2), (4, 4)]
|
|
X, y = make_blobs(
|
|
n_samples=100,
|
|
random_state=0,
|
|
n_features=4,
|
|
centers=centers,
|
|
cluster_std=1.0,
|
|
shuffle=True,
|
|
)
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X, y, test_size=0.2, random_state=0
|
|
)
|
|
estimator = clone(estimator_orig)
|
|
|
|
if hasattr(estimator, "decision_function") and hasattr(estimator, "predict_proba"):
|
|
|
|
estimator.fit(X_train, y_train)
|
|
# Since the link function from decision_function() to predict_proba()
|
|
# is sometimes not precise enough (typically expit), we round to the
|
|
# 10th decimal to avoid numerical issues: we compare the rank
|
|
# with deterministic ties rather than get platform specific rank
|
|
# inversions in case of machine level differences.
|
|
a = estimator.predict_proba(X_test)[:, 1].round(decimals=10)
|
|
b = estimator.decision_function(X_test).round(decimals=10)
|
|
|
|
rank_proba, rank_score = rankdata(a), rankdata(b)
|
|
try:
|
|
assert_array_almost_equal(rank_proba, rank_score)
|
|
except AssertionError:
|
|
# Sometimes, the rounding applied on the probabilities will have
|
|
# ties that are not present in the scores because it is
|
|
# numerically more precise. In this case, we relax the test by
|
|
# grouping the decision function scores based on the probability
|
|
# rank and check that the score is monotonically increasing.
|
|
grouped_y_score = np.array(
|
|
[b[rank_proba == group].mean() for group in np.unique(rank_proba)]
|
|
)
|
|
sorted_idx = np.argsort(grouped_y_score)
|
|
assert_array_equal(sorted_idx, np.arange(len(sorted_idx)))
|
|
|
|
|
|
def check_outliers_fit_predict(name, estimator_orig):
|
|
# Check fit_predict for outlier detectors.
|
|
|
|
n_samples = 300
|
|
X, _ = make_blobs(n_samples=n_samples, random_state=0)
|
|
X = shuffle(X, random_state=7)
|
|
n_samples, n_features = X.shape
|
|
estimator = clone(estimator_orig)
|
|
|
|
set_random_state(estimator)
|
|
|
|
y_pred = estimator.fit_predict(X)
|
|
assert y_pred.shape == (n_samples,)
|
|
assert y_pred.dtype.kind == "i"
|
|
assert_array_equal(np.unique(y_pred), np.array([-1, 1]))
|
|
|
|
# check fit_predict = fit.predict when the estimator has both a predict and
|
|
# a fit_predict method. recall that it is already assumed here that the
|
|
# estimator has a fit_predict method
|
|
if hasattr(estimator, "predict"):
|
|
y_pred_2 = estimator.fit(X).predict(X)
|
|
assert_array_equal(y_pred, y_pred_2)
|
|
|
|
if hasattr(estimator, "contamination"):
|
|
# proportion of outliers equal to contamination parameter when not
|
|
# set to 'auto'
|
|
expected_outliers = 30
|
|
contamination = float(expected_outliers) / n_samples
|
|
estimator.set_params(contamination=contamination)
|
|
y_pred = estimator.fit_predict(X)
|
|
|
|
num_outliers = np.sum(y_pred != 1)
|
|
# num_outliers should be equal to expected_outliers unless
|
|
# there are ties in the decision_function values. this can
|
|
# only be tested for estimators with a decision_function
|
|
# method
|
|
if num_outliers != expected_outliers and hasattr(
|
|
estimator, "decision_function"
|
|
):
|
|
decision = estimator.decision_function(X)
|
|
check_outlier_corruption(num_outliers, expected_outliers, decision)
|
|
|
|
|
|
def check_fit_non_negative(name, estimator_orig):
|
|
# Check that proper warning is raised for non-negative X
|
|
# when tag requires_positive_X is present
|
|
X = np.array([[-1.0, 1], [-1.0, 1]])
|
|
y = np.array([1, 2])
|
|
estimator = clone(estimator_orig)
|
|
with raises(ValueError):
|
|
estimator.fit(X, y)
|
|
|
|
|
|
def check_fit_idempotent(name, estimator_orig):
|
|
# Check that est.fit(X) is the same as est.fit(X).fit(X). Ideally we would
|
|
# check that the estimated parameters during training (e.g. coefs_) are
|
|
# the same, but having a universal comparison function for those
|
|
# attributes is difficult and full of edge cases. So instead we check that
|
|
# predict(), predict_proba(), decision_function() and transform() return
|
|
# the same results.
|
|
|
|
check_methods = ["predict", "transform", "decision_function", "predict_proba"]
|
|
rng = np.random.RandomState(0)
|
|
|
|
estimator = clone(estimator_orig)
|
|
set_random_state(estimator)
|
|
if "warm_start" in estimator.get_params().keys():
|
|
estimator.set_params(warm_start=False)
|
|
|
|
n_samples = 100
|
|
X = rng.normal(loc=100, size=(n_samples, 2))
|
|
X = _enforce_estimator_tags_X(estimator, X)
|
|
if is_regressor(estimator_orig):
|
|
y = rng.normal(size=n_samples)
|
|
else:
|
|
y = rng.randint(low=0, high=2, size=n_samples)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
train, test = next(ShuffleSplit(test_size=0.2, random_state=rng).split(X))
|
|
X_train, y_train = _safe_split(estimator, X, y, train)
|
|
X_test, y_test = _safe_split(estimator, X, y, test, train)
|
|
|
|
# Fit for the first time
|
|
estimator.fit(X_train, y_train)
|
|
|
|
result = {
|
|
method: getattr(estimator, method)(X_test)
|
|
for method in check_methods
|
|
if hasattr(estimator, method)
|
|
}
|
|
|
|
# Fit again
|
|
set_random_state(estimator)
|
|
estimator.fit(X_train, y_train)
|
|
|
|
for method in check_methods:
|
|
if hasattr(estimator, method):
|
|
new_result = getattr(estimator, method)(X_test)
|
|
if np.issubdtype(new_result.dtype, np.floating):
|
|
tol = 2 * np.finfo(new_result.dtype).eps
|
|
else:
|
|
tol = 2 * np.finfo(np.float64).eps
|
|
assert_allclose_dense_sparse(
|
|
result[method],
|
|
new_result,
|
|
atol=max(tol, 1e-9),
|
|
rtol=max(tol, 1e-7),
|
|
err_msg="Idempotency check failed for method {}".format(method),
|
|
)
|
|
|
|
|
|
def check_fit_check_is_fitted(name, estimator_orig):
|
|
# Make sure that estimator doesn't pass check_is_fitted before calling fit
|
|
# and that passes check_is_fitted once it's fit.
|
|
|
|
rng = np.random.RandomState(42)
|
|
|
|
estimator = clone(estimator_orig)
|
|
set_random_state(estimator)
|
|
if "warm_start" in estimator.get_params():
|
|
estimator.set_params(warm_start=False)
|
|
|
|
n_samples = 100
|
|
X = rng.normal(loc=100, size=(n_samples, 2))
|
|
X = _enforce_estimator_tags_X(estimator, X)
|
|
if is_regressor(estimator_orig):
|
|
y = rng.normal(size=n_samples)
|
|
else:
|
|
y = rng.randint(low=0, high=2, size=n_samples)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
if not _safe_tags(estimator).get("stateless", False):
|
|
# stateless estimators (such as FunctionTransformer) are always "fit"!
|
|
try:
|
|
check_is_fitted(estimator)
|
|
raise AssertionError(
|
|
f"{estimator.__class__.__name__} passes check_is_fitted before being"
|
|
" fit!"
|
|
)
|
|
except NotFittedError:
|
|
pass
|
|
estimator.fit(X, y)
|
|
try:
|
|
check_is_fitted(estimator)
|
|
except NotFittedError as e:
|
|
raise NotFittedError(
|
|
"Estimator fails to pass `check_is_fitted` even though it has been fit."
|
|
) from e
|
|
|
|
|
|
def check_n_features_in(name, estimator_orig):
|
|
# Make sure that n_features_in_ attribute doesn't exist until fit is
|
|
# called, and that its value is correct.
|
|
|
|
rng = np.random.RandomState(0)
|
|
|
|
estimator = clone(estimator_orig)
|
|
set_random_state(estimator)
|
|
if "warm_start" in estimator.get_params():
|
|
estimator.set_params(warm_start=False)
|
|
|
|
n_samples = 100
|
|
X = rng.normal(loc=100, size=(n_samples, 2))
|
|
X = _enforce_estimator_tags_X(estimator, X)
|
|
if is_regressor(estimator_orig):
|
|
y = rng.normal(size=n_samples)
|
|
else:
|
|
y = rng.randint(low=0, high=2, size=n_samples)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
assert not hasattr(estimator, "n_features_in_")
|
|
estimator.fit(X, y)
|
|
assert hasattr(estimator, "n_features_in_")
|
|
assert estimator.n_features_in_ == X.shape[1]
|
|
|
|
|
|
def check_requires_y_none(name, estimator_orig):
|
|
# Make sure that an estimator with requires_y=True fails gracefully when
|
|
# given y=None
|
|
|
|
rng = np.random.RandomState(0)
|
|
|
|
estimator = clone(estimator_orig)
|
|
set_random_state(estimator)
|
|
|
|
n_samples = 100
|
|
X = rng.normal(loc=100, size=(n_samples, 2))
|
|
X = _enforce_estimator_tags_X(estimator, X)
|
|
|
|
expected_err_msgs = (
|
|
"requires y to be passed, but the target y is None",
|
|
"Expected array-like (array or non-string sequence), got None",
|
|
"y should be a 1d array",
|
|
)
|
|
|
|
try:
|
|
estimator.fit(X, None)
|
|
except ValueError as ve:
|
|
if not any(msg in str(ve) for msg in expected_err_msgs):
|
|
raise ve
|
|
|
|
|
|
@ignore_warnings(category=FutureWarning)
|
|
def check_n_features_in_after_fitting(name, estimator_orig):
|
|
# Make sure that n_features_in are checked after fitting
|
|
tags = _safe_tags(estimator_orig)
|
|
|
|
is_supported_X_types = (
|
|
"2darray" in tags["X_types"] or "categorical" in tags["X_types"]
|
|
)
|
|
|
|
if not is_supported_X_types or tags["no_validation"]:
|
|
return
|
|
|
|
rng = np.random.RandomState(0)
|
|
|
|
estimator = clone(estimator_orig)
|
|
set_random_state(estimator)
|
|
if "warm_start" in estimator.get_params():
|
|
estimator.set_params(warm_start=False)
|
|
|
|
n_samples = 150
|
|
X = rng.normal(size=(n_samples, 8))
|
|
X = _enforce_estimator_tags_X(estimator, X)
|
|
|
|
if is_regressor(estimator):
|
|
y = rng.normal(size=n_samples)
|
|
else:
|
|
y = rng.randint(low=0, high=2, size=n_samples)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
estimator.fit(X, y)
|
|
assert estimator.n_features_in_ == X.shape[1]
|
|
|
|
# check methods will check n_features_in_
|
|
check_methods = [
|
|
"predict",
|
|
"transform",
|
|
"decision_function",
|
|
"predict_proba",
|
|
"score",
|
|
]
|
|
X_bad = X[:, [1]]
|
|
|
|
msg = f"X has 1 features, but \\w+ is expecting {X.shape[1]} features as input"
|
|
for method in check_methods:
|
|
if not hasattr(estimator, method):
|
|
continue
|
|
|
|
callable_method = getattr(estimator, method)
|
|
if method == "score":
|
|
callable_method = partial(callable_method, y=y)
|
|
|
|
with raises(ValueError, match=msg):
|
|
callable_method(X_bad)
|
|
|
|
# partial_fit will check in the second call
|
|
if not hasattr(estimator, "partial_fit"):
|
|
return
|
|
|
|
estimator = clone(estimator_orig)
|
|
if is_classifier(estimator):
|
|
estimator.partial_fit(X, y, classes=np.unique(y))
|
|
else:
|
|
estimator.partial_fit(X, y)
|
|
assert estimator.n_features_in_ == X.shape[1]
|
|
|
|
with raises(ValueError, match=msg):
|
|
estimator.partial_fit(X_bad, y)
|
|
|
|
|
|
def check_estimator_get_tags_default_keys(name, estimator_orig):
|
|
# check that if _get_tags is implemented, it contains all keys from
|
|
# _DEFAULT_KEYS
|
|
estimator = clone(estimator_orig)
|
|
if not hasattr(estimator, "_get_tags"):
|
|
return
|
|
|
|
tags_keys = set(estimator._get_tags().keys())
|
|
default_tags_keys = set(_DEFAULT_TAGS.keys())
|
|
assert tags_keys.intersection(default_tags_keys) == default_tags_keys, (
|
|
f"{name}._get_tags() is missing entries for the following default tags"
|
|
f": {default_tags_keys - tags_keys.intersection(default_tags_keys)}"
|
|
)
|
|
|
|
|
|
def check_dataframe_column_names_consistency(name, estimator_orig):
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
raise SkipTest(
|
|
"pandas is not installed: not checking column name consistency for pandas"
|
|
)
|
|
|
|
tags = _safe_tags(estimator_orig)
|
|
is_supported_X_types = (
|
|
"2darray" in tags["X_types"] or "categorical" in tags["X_types"]
|
|
)
|
|
|
|
if not is_supported_X_types or tags["no_validation"]:
|
|
return
|
|
|
|
rng = np.random.RandomState(0)
|
|
|
|
estimator = clone(estimator_orig)
|
|
set_random_state(estimator)
|
|
|
|
X_orig = rng.normal(size=(150, 8))
|
|
|
|
X_orig = _enforce_estimator_tags_X(estimator, X_orig)
|
|
n_samples, n_features = X_orig.shape
|
|
|
|
names = np.array([f"col_{i}" for i in range(n_features)])
|
|
X = pd.DataFrame(X_orig, columns=names)
|
|
|
|
if is_regressor(estimator):
|
|
y = rng.normal(size=n_samples)
|
|
else:
|
|
y = rng.randint(low=0, high=2, size=n_samples)
|
|
y = _enforce_estimator_tags_y(estimator, y)
|
|
|
|
# Check that calling `fit` does not raise any warnings about feature names.
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings(
|
|
"error",
|
|
message="X does not have valid feature names",
|
|
category=UserWarning,
|
|
module="sklearn",
|
|
)
|
|
estimator.fit(X, y)
|
|
|
|
if not hasattr(estimator, "feature_names_in_"):
|
|
raise ValueError(
|
|
"Estimator does not have a feature_names_in_ "
|
|
"attribute after fitting with a dataframe"
|
|
)
|
|
assert isinstance(estimator.feature_names_in_, np.ndarray)
|
|
assert estimator.feature_names_in_.dtype == object
|
|
assert_array_equal(estimator.feature_names_in_, names)
|
|
|
|
# Only check sklearn estimators for feature_names_in_ in docstring
|
|
module_name = estimator_orig.__module__
|
|
if (
|
|
module_name.startswith("sklearn.")
|
|
and not ("test_" in module_name or module_name.endswith("_testing"))
|
|
and ("feature_names_in_" not in (estimator_orig.__doc__))
|
|
):
|
|
raise ValueError(
|
|
f"Estimator {name} does not document its feature_names_in_ attribute"
|
|
)
|
|
|
|
check_methods = []
|
|
for method in (
|
|
"predict",
|
|
"transform",
|
|
"decision_function",
|
|
"predict_proba",
|
|
"score",
|
|
"score_samples",
|
|
"predict_log_proba",
|
|
):
|
|
if not hasattr(estimator, method):
|
|
continue
|
|
|
|
callable_method = getattr(estimator, method)
|
|
if method == "score":
|
|
callable_method = partial(callable_method, y=y)
|
|
check_methods.append((method, callable_method))
|
|
|
|
for _, method in check_methods:
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings(
|
|
"error",
|
|
message="X does not have valid feature names",
|
|
category=UserWarning,
|
|
module="sklearn",
|
|
)
|
|
method(X) # works without UserWarning for valid features
|
|
|
|
invalid_names = [
|
|
(names[::-1], "Feature names must be in the same order as they were in fit."),
|
|
(
|
|
[f"another_prefix_{i}" for i in range(n_features)],
|
|
"Feature names unseen at fit time:\n- another_prefix_0\n-"
|
|
" another_prefix_1\n",
|
|
),
|
|
(
|
|
names[:3],
|
|
f"Feature names seen at fit time, yet now missing:\n- {min(names[3:])}\n",
|
|
),
|
|
]
|
|
params = {
|
|
key: value
|
|
for key, value in estimator.get_params().items()
|
|
if "early_stopping" in key
|
|
}
|
|
early_stopping_enabled = any(value is True for value in params.values())
|
|
|
|
for invalid_name, additional_message in invalid_names:
|
|
X_bad = pd.DataFrame(X, columns=invalid_name)
|
|
|
|
expected_msg = re.escape(
|
|
"The feature names should match those that were passed during fit.\n"
|
|
f"{additional_message}"
|
|
)
|
|
for name, method in check_methods:
|
|
with raises(
|
|
ValueError, match=expected_msg, err_msg=f"{name} did not raise"
|
|
):
|
|
method(X_bad)
|
|
|
|
# partial_fit checks on second call
|
|
# Do not call partial fit if early_stopping is on
|
|
if not hasattr(estimator, "partial_fit") or early_stopping_enabled:
|
|
continue
|
|
|
|
estimator = clone(estimator_orig)
|
|
if is_classifier(estimator):
|
|
classes = np.unique(y)
|
|
estimator.partial_fit(X, y, classes=classes)
|
|
else:
|
|
estimator.partial_fit(X, y)
|
|
|
|
with raises(ValueError, match=expected_msg):
|
|
estimator.partial_fit(X_bad, y)
|
|
|
|
|
|
def check_transformer_get_feature_names_out(name, transformer_orig):
|
|
tags = transformer_orig._get_tags()
|
|
if "2darray" not in tags["X_types"] or tags["no_validation"]:
|
|
return
|
|
|
|
X, y = make_blobs(
|
|
n_samples=30,
|
|
centers=[[0, 0, 0], [1, 1, 1]],
|
|
random_state=0,
|
|
n_features=2,
|
|
cluster_std=0.1,
|
|
)
|
|
X = StandardScaler().fit_transform(X)
|
|
|
|
transformer = clone(transformer_orig)
|
|
X = _enforce_estimator_tags_X(transformer, X)
|
|
|
|
n_features = X.shape[1]
|
|
set_random_state(transformer)
|
|
|
|
y_ = y
|
|
if name in CROSS_DECOMPOSITION:
|
|
y_ = np.c_[np.asarray(y), np.asarray(y)]
|
|
y_[::2, 1] *= 2
|
|
|
|
X_transform = transformer.fit_transform(X, y=y_)
|
|
input_features = [f"feature{i}" for i in range(n_features)]
|
|
|
|
# input_features names is not the same length as n_features_in_
|
|
with raises(ValueError, match="input_features should have length equal"):
|
|
transformer.get_feature_names_out(input_features[::2])
|
|
|
|
feature_names_out = transformer.get_feature_names_out(input_features)
|
|
assert feature_names_out is not None
|
|
assert isinstance(feature_names_out, np.ndarray)
|
|
assert feature_names_out.dtype == object
|
|
assert all(isinstance(name, str) for name in feature_names_out)
|
|
|
|
if isinstance(X_transform, tuple):
|
|
n_features_out = X_transform[0].shape[1]
|
|
else:
|
|
n_features_out = X_transform.shape[1]
|
|
|
|
assert (
|
|
len(feature_names_out) == n_features_out
|
|
), f"Expected {n_features_out} feature names, got {len(feature_names_out)}"
|
|
|
|
|
|
def check_transformer_get_feature_names_out_pandas(name, transformer_orig):
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
raise SkipTest(
|
|
"pandas is not installed: not checking column name consistency for pandas"
|
|
)
|
|
|
|
tags = transformer_orig._get_tags()
|
|
if "2darray" not in tags["X_types"] or tags["no_validation"]:
|
|
return
|
|
|
|
X, y = make_blobs(
|
|
n_samples=30,
|
|
centers=[[0, 0, 0], [1, 1, 1]],
|
|
random_state=0,
|
|
n_features=2,
|
|
cluster_std=0.1,
|
|
)
|
|
X = StandardScaler().fit_transform(X)
|
|
|
|
transformer = clone(transformer_orig)
|
|
X = _enforce_estimator_tags_X(transformer, X)
|
|
|
|
n_features = X.shape[1]
|
|
set_random_state(transformer)
|
|
|
|
y_ = y
|
|
if name in CROSS_DECOMPOSITION:
|
|
y_ = np.c_[np.asarray(y), np.asarray(y)]
|
|
y_[::2, 1] *= 2
|
|
|
|
feature_names_in = [f"col{i}" for i in range(n_features)]
|
|
df = pd.DataFrame(X, columns=feature_names_in)
|
|
X_transform = transformer.fit_transform(df, y=y_)
|
|
|
|
# error is raised when `input_features` do not match feature_names_in
|
|
invalid_feature_names = [f"bad{i}" for i in range(n_features)]
|
|
with raises(ValueError, match="input_features is not equal to feature_names_in_"):
|
|
transformer.get_feature_names_out(invalid_feature_names)
|
|
|
|
feature_names_out_default = transformer.get_feature_names_out()
|
|
feature_names_in_explicit_names = transformer.get_feature_names_out(
|
|
feature_names_in
|
|
)
|
|
assert_array_equal(feature_names_out_default, feature_names_in_explicit_names)
|
|
|
|
if isinstance(X_transform, tuple):
|
|
n_features_out = X_transform[0].shape[1]
|
|
else:
|
|
n_features_out = X_transform.shape[1]
|
|
|
|
assert (
|
|
len(feature_names_out_default) == n_features_out
|
|
), f"Expected {n_features_out} feature names, got {len(feature_names_out_default)}"
|
|
|
|
|
|
def check_param_validation(name, estimator_orig):
|
|
# Check that an informative error is raised when the value of a constructor
|
|
# parameter does not have an appropriate type or value.
|
|
rng = np.random.RandomState(0)
|
|
X = rng.uniform(size=(20, 5))
|
|
y = rng.randint(0, 2, size=20)
|
|
y = _enforce_estimator_tags_y(estimator_orig, y)
|
|
|
|
estimator_params = estimator_orig.get_params(deep=False).keys()
|
|
|
|
# check that there is a constraint for each parameter
|
|
if estimator_params:
|
|
validation_params = estimator_orig._parameter_constraints.keys()
|
|
unexpected_params = set(validation_params) - set(estimator_params)
|
|
missing_params = set(estimator_params) - set(validation_params)
|
|
err_msg = (
|
|
f"Mismatch between _parameter_constraints and the parameters of {name}."
|
|
f"\nConsider the unexpected parameters {unexpected_params} and expected but"
|
|
f" missing parameters {missing_params}"
|
|
)
|
|
assert validation_params == estimator_params, err_msg
|
|
|
|
# this object does not have a valid type for sure for all params
|
|
param_with_bad_type = type("BadType", (), {})()
|
|
|
|
fit_methods = ["fit", "partial_fit", "fit_transform", "fit_predict"]
|
|
|
|
for param_name in estimator_params:
|
|
constraints = estimator_orig._parameter_constraints[param_name]
|
|
|
|
if constraints == "no_validation":
|
|
# This parameter is not validated
|
|
continue
|
|
|
|
match = rf"The '{param_name}' parameter of {name} must be .* Got .* instead."
|
|
err_msg = (
|
|
f"{name} does not raise an informative error message when the "
|
|
f"parameter {param_name} does not have a valid type or value."
|
|
)
|
|
|
|
estimator = clone(estimator_orig)
|
|
|
|
# First, check that the error is raised if param doesn't match any valid type.
|
|
estimator.set_params(**{param_name: param_with_bad_type})
|
|
|
|
for method in fit_methods:
|
|
if not hasattr(estimator, method):
|
|
# the method is not accessible with the current set of parameters
|
|
continue
|
|
|
|
with raises(InvalidParameterError, match=match, err_msg=err_msg):
|
|
if any(
|
|
isinstance(X_type, str) and X_type.endswith("labels")
|
|
for X_type in _safe_tags(estimator, key="X_types")
|
|
):
|
|
# The estimator is a label transformer and take only `y`
|
|
getattr(estimator, method)(y)
|
|
else:
|
|
getattr(estimator, method)(X, y)
|
|
|
|
# Then, for constraints that are more than a type constraint, check that the
|
|
# error is raised if param does match a valid type but does not match any valid
|
|
# value for this type.
|
|
constraints = [make_constraint(constraint) for constraint in constraints]
|
|
|
|
for constraint in constraints:
|
|
try:
|
|
bad_value = generate_invalid_param_val(constraint, constraints)
|
|
except NotImplementedError:
|
|
continue
|
|
|
|
estimator.set_params(**{param_name: bad_value})
|
|
|
|
for method in fit_methods:
|
|
if not hasattr(estimator, method):
|
|
# the method is not accessible with the current set of parameters
|
|
continue
|
|
|
|
with raises(InvalidParameterError, match=match, err_msg=err_msg):
|
|
if any(
|
|
X_type.endswith("labels")
|
|
for X_type in _safe_tags(estimator, key="X_types")
|
|
):
|
|
# The estimator is a label transformer and take only `y`
|
|
getattr(estimator, method)(y)
|
|
else:
|
|
getattr(estimator, method)(X, y)
|
|
|
|
|
|
def check_set_output_transform(name, transformer_orig):
|
|
# Check transformer.set_output with the default configuration does not
|
|
# change the transform output.
|
|
tags = transformer_orig._get_tags()
|
|
if "2darray" not in tags["X_types"] or tags["no_validation"]:
|
|
return
|
|
|
|
rng = np.random.RandomState(0)
|
|
transformer = clone(transformer_orig)
|
|
|
|
X = rng.uniform(size=(20, 5))
|
|
X = _enforce_estimator_tags_X(transformer_orig, X)
|
|
y = rng.randint(0, 2, size=20)
|
|
y = _enforce_estimator_tags_y(transformer_orig, y)
|
|
set_random_state(transformer)
|
|
|
|
def fit_then_transform(est):
|
|
if name in CROSS_DECOMPOSITION:
|
|
return est.fit(X, y).transform(X, y)
|
|
return est.fit(X, y).transform(X)
|
|
|
|
def fit_transform(est):
|
|
return est.fit_transform(X, y)
|
|
|
|
transform_methods = [fit_then_transform, fit_transform]
|
|
for transform_method in transform_methods:
|
|
transformer = clone(transformer)
|
|
X_trans_no_setting = transform_method(transformer)
|
|
|
|
# Auto wrapping only wraps the first array
|
|
if name in CROSS_DECOMPOSITION:
|
|
X_trans_no_setting = X_trans_no_setting[0]
|
|
|
|
transformer.set_output(transform="default")
|
|
X_trans_default = transform_method(transformer)
|
|
|
|
if name in CROSS_DECOMPOSITION:
|
|
X_trans_default = X_trans_default[0]
|
|
|
|
# Default and no setting -> returns the same transformation
|
|
assert_allclose_dense_sparse(X_trans_no_setting, X_trans_default)
|
|
|
|
|
|
def _output_from_fit_transform(transformer, name, X, df, y):
|
|
"""Generate output to test `set_output` for different configuration:
|
|
|
|
- calling either `fit.transform` or `fit_transform`;
|
|
- passing either a dataframe or a numpy array to fit;
|
|
- passing either a dataframe or a numpy array to transform.
|
|
"""
|
|
outputs = {}
|
|
|
|
# fit then transform case:
|
|
cases = [
|
|
("fit.transform/df/df", df, df),
|
|
("fit.transform/df/array", df, X),
|
|
("fit.transform/array/df", X, df),
|
|
("fit.transform/array/array", X, X),
|
|
]
|
|
for (
|
|
case,
|
|
data_fit,
|
|
data_transform,
|
|
) in cases:
|
|
transformer.fit(data_fit, y)
|
|
if name in CROSS_DECOMPOSITION:
|
|
X_trans, _ = transformer.transform(data_transform, y)
|
|
else:
|
|
X_trans = transformer.transform(data_transform)
|
|
outputs[case] = (X_trans, transformer.get_feature_names_out())
|
|
|
|
# fit_transform case:
|
|
cases = [
|
|
("fit_transform/df", df),
|
|
("fit_transform/array", X),
|
|
]
|
|
for case, data in cases:
|
|
if name in CROSS_DECOMPOSITION:
|
|
X_trans, _ = transformer.fit_transform(data, y)
|
|
else:
|
|
X_trans = transformer.fit_transform(data, y)
|
|
outputs[case] = (X_trans, transformer.get_feature_names_out())
|
|
|
|
return outputs
|
|
|
|
|
|
def _check_generated_dataframe(name, case, outputs_default, outputs_pandas):
|
|
import pandas as pd
|
|
|
|
X_trans, feature_names_default = outputs_default
|
|
df_trans, feature_names_pandas = outputs_pandas
|
|
|
|
assert isinstance(df_trans, pd.DataFrame)
|
|
# We always rely on the output of `get_feature_names_out` of the
|
|
# transformer used to generate the dataframe as a ground-truth of the
|
|
# columns.
|
|
expected_dataframe = pd.DataFrame(X_trans, columns=feature_names_pandas)
|
|
|
|
try:
|
|
pd.testing.assert_frame_equal(df_trans, expected_dataframe)
|
|
except AssertionError as e:
|
|
raise AssertionError(
|
|
f"{name} does not generate a valid dataframe in the {case} "
|
|
"case. The generated dataframe is not equal to the expected "
|
|
f"dataframe. The error message is: {e}"
|
|
) from e
|
|
|
|
|
|
def check_set_output_transform_pandas(name, transformer_orig):
|
|
# Check transformer.set_output configures the output of transform="pandas".
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
raise SkipTest(
|
|
"pandas is not installed: not checking column name consistency for pandas"
|
|
)
|
|
|
|
tags = transformer_orig._get_tags()
|
|
if "2darray" not in tags["X_types"] or tags["no_validation"]:
|
|
return
|
|
|
|
rng = np.random.RandomState(0)
|
|
transformer = clone(transformer_orig)
|
|
|
|
X = rng.uniform(size=(20, 5))
|
|
X = _enforce_estimator_tags_X(transformer_orig, X)
|
|
y = rng.randint(0, 2, size=20)
|
|
y = _enforce_estimator_tags_y(transformer_orig, y)
|
|
set_random_state(transformer)
|
|
|
|
feature_names_in = [f"col{i}" for i in range(X.shape[1])]
|
|
df = pd.DataFrame(X, columns=feature_names_in)
|
|
|
|
transformer_default = clone(transformer).set_output(transform="default")
|
|
outputs_default = _output_from_fit_transform(transformer_default, name, X, df, y)
|
|
transformer_pandas = clone(transformer).set_output(transform="pandas")
|
|
try:
|
|
outputs_pandas = _output_from_fit_transform(transformer_pandas, name, X, df, y)
|
|
except ValueError as e:
|
|
# transformer does not support sparse data
|
|
assert str(e) == "Pandas output does not support sparse data.", e
|
|
return
|
|
|
|
for case in outputs_default:
|
|
_check_generated_dataframe(
|
|
name, case, outputs_default[case], outputs_pandas[case]
|
|
)
|
|
|
|
|
|
def check_global_ouptut_transform_pandas(name, transformer_orig):
|
|
"""Check that setting globally the output of a transformer to pandas lead to the
|
|
right results."""
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
raise SkipTest(
|
|
"pandas is not installed: not checking column name consistency for pandas"
|
|
)
|
|
|
|
tags = transformer_orig._get_tags()
|
|
if "2darray" not in tags["X_types"] or tags["no_validation"]:
|
|
return
|
|
|
|
rng = np.random.RandomState(0)
|
|
transformer = clone(transformer_orig)
|
|
|
|
X = rng.uniform(size=(20, 5))
|
|
X = _enforce_estimator_tags_X(transformer_orig, X)
|
|
y = rng.randint(0, 2, size=20)
|
|
y = _enforce_estimator_tags_y(transformer_orig, y)
|
|
set_random_state(transformer)
|
|
|
|
feature_names_in = [f"col{i}" for i in range(X.shape[1])]
|
|
df = pd.DataFrame(X, columns=feature_names_in)
|
|
|
|
transformer_default = clone(transformer).set_output(transform="default")
|
|
outputs_default = _output_from_fit_transform(transformer_default, name, X, df, y)
|
|
transformer_pandas = clone(transformer)
|
|
try:
|
|
with config_context(transform_output="pandas"):
|
|
outputs_pandas = _output_from_fit_transform(
|
|
transformer_pandas, name, X, df, y
|
|
)
|
|
except ValueError as e:
|
|
# transformer does not support sparse data
|
|
assert str(e) == "Pandas output does not support sparse data.", e
|
|
return
|
|
|
|
for case in outputs_default:
|
|
_check_generated_dataframe(
|
|
name, case, outputs_default[case], outputs_pandas[case]
|
|
)
|