1046 lines
36 KiB
Python
1046 lines
36 KiB
Python
# Authors: Olivier Grisel <olivier.grisel@ensta.org>
|
|
# Mathieu Blondel <mathieu@mblondel.org>
|
|
# Denis Engemann <denis-alexander.engemann@inria.fr>
|
|
#
|
|
# License: BSD 3 clause
|
|
import numpy as np
|
|
from scipy import sparse
|
|
from scipy import linalg
|
|
from scipy.sparse.linalg import eigsh
|
|
from scipy.special import expit
|
|
|
|
import pytest
|
|
from sklearn.utils import gen_batches
|
|
from sklearn.utils._arpack import _init_arpack_v0
|
|
from sklearn.utils._testing import assert_almost_equal
|
|
from sklearn.utils._testing import assert_allclose
|
|
from sklearn.utils._testing import assert_allclose_dense_sparse
|
|
from sklearn.utils._testing import assert_array_equal
|
|
from sklearn.utils._testing import assert_array_almost_equal
|
|
from sklearn.utils._testing import skip_if_32bit
|
|
from sklearn.utils.fixes import _mode, _eigh
|
|
|
|
from sklearn.utils.extmath import density, _safe_accumulator_op
|
|
from sklearn.utils.extmath import randomized_svd, _randomized_eigsh
|
|
from sklearn.utils.extmath import row_norms
|
|
from sklearn.utils.extmath import weighted_mode
|
|
from sklearn.utils.extmath import cartesian
|
|
from sklearn.utils.extmath import log_logistic
|
|
from sklearn.utils.extmath import svd_flip
|
|
from sklearn.utils.extmath import _incremental_mean_and_var
|
|
from sklearn.utils.extmath import _deterministic_vector_sign_flip
|
|
from sklearn.utils.extmath import softmax
|
|
from sklearn.utils.extmath import stable_cumsum
|
|
from sklearn.utils.extmath import safe_sparse_dot
|
|
from sklearn.datasets import make_low_rank_matrix, make_sparse_spd_matrix
|
|
|
|
|
|
def test_density():
|
|
rng = np.random.RandomState(0)
|
|
X = rng.randint(10, size=(10, 5))
|
|
X[1, 2] = 0
|
|
X[5, 3] = 0
|
|
X_csr = sparse.csr_matrix(X)
|
|
X_csc = sparse.csc_matrix(X)
|
|
X_coo = sparse.coo_matrix(X)
|
|
X_lil = sparse.lil_matrix(X)
|
|
|
|
for X_ in (X_csr, X_csc, X_coo, X_lil):
|
|
assert density(X_) == density(X)
|
|
|
|
|
|
# TODO(1.4): Remove test
|
|
def test_density_deprecated_kwargs():
|
|
"""Check that future warning is raised when user enters keyword arguments."""
|
|
test_array = np.array([[1, 2, 3], [4, 5, 6]])
|
|
with pytest.warns(
|
|
FutureWarning,
|
|
match=(
|
|
"Additional keyword arguments are deprecated in version 1.2 and will be"
|
|
" removed in version 1.4."
|
|
),
|
|
):
|
|
density(test_array, a=1)
|
|
|
|
|
|
def test_uniform_weights():
|
|
# with uniform weights, results should be identical to stats.mode
|
|
rng = np.random.RandomState(0)
|
|
x = rng.randint(10, size=(10, 5))
|
|
weights = np.ones(x.shape)
|
|
|
|
for axis in (None, 0, 1):
|
|
mode, score = _mode(x, axis)
|
|
mode2, score2 = weighted_mode(x, weights, axis=axis)
|
|
|
|
assert_array_equal(mode, mode2)
|
|
assert_array_equal(score, score2)
|
|
|
|
|
|
def test_random_weights():
|
|
# set this up so that each row should have a weighted mode of 6,
|
|
# with a score that is easily reproduced
|
|
mode_result = 6
|
|
|
|
rng = np.random.RandomState(0)
|
|
x = rng.randint(mode_result, size=(100, 10))
|
|
w = rng.random_sample(x.shape)
|
|
|
|
x[:, :5] = mode_result
|
|
w[:, :5] += 1
|
|
|
|
mode, score = weighted_mode(x, w, axis=1)
|
|
|
|
assert_array_equal(mode, mode_result)
|
|
assert_array_almost_equal(score.ravel(), w[:, :5].sum(1))
|
|
|
|
|
|
def check_randomized_svd_low_rank(dtype):
|
|
# Check that extmath.randomized_svd is consistent with linalg.svd
|
|
n_samples = 100
|
|
n_features = 500
|
|
rank = 5
|
|
k = 10
|
|
decimal = 5 if dtype == np.float32 else 7
|
|
dtype = np.dtype(dtype)
|
|
|
|
# generate a matrix X of approximate effective rank `rank` and no noise
|
|
# component (very structured signal):
|
|
X = make_low_rank_matrix(
|
|
n_samples=n_samples,
|
|
n_features=n_features,
|
|
effective_rank=rank,
|
|
tail_strength=0.0,
|
|
random_state=0,
|
|
).astype(dtype, copy=False)
|
|
assert X.shape == (n_samples, n_features)
|
|
|
|
# compute the singular values of X using the slow exact method
|
|
U, s, Vt = linalg.svd(X, full_matrices=False)
|
|
|
|
# Convert the singular values to the specific dtype
|
|
U = U.astype(dtype, copy=False)
|
|
s = s.astype(dtype, copy=False)
|
|
Vt = Vt.astype(dtype, copy=False)
|
|
|
|
for normalizer in ["auto", "LU", "QR"]: # 'none' would not be stable
|
|
# compute the singular values of X using the fast approximate method
|
|
Ua, sa, Va = randomized_svd(
|
|
X, k, power_iteration_normalizer=normalizer, random_state=0
|
|
)
|
|
|
|
# If the input dtype is float, then the output dtype is float of the
|
|
# same bit size (f32 is not upcast to f64)
|
|
# But if the input dtype is int, the output dtype is float64
|
|
if dtype.kind == "f":
|
|
assert Ua.dtype == dtype
|
|
assert sa.dtype == dtype
|
|
assert Va.dtype == dtype
|
|
else:
|
|
assert Ua.dtype == np.float64
|
|
assert sa.dtype == np.float64
|
|
assert Va.dtype == np.float64
|
|
|
|
assert Ua.shape == (n_samples, k)
|
|
assert sa.shape == (k,)
|
|
assert Va.shape == (k, n_features)
|
|
|
|
# ensure that the singular values of both methods are equal up to the
|
|
# real rank of the matrix
|
|
assert_almost_equal(s[:k], sa, decimal=decimal)
|
|
|
|
# check the singular vectors too (while not checking the sign)
|
|
assert_almost_equal(
|
|
np.dot(U[:, :k], Vt[:k, :]), np.dot(Ua, Va), decimal=decimal
|
|
)
|
|
|
|
# check the sparse matrix representation
|
|
X = sparse.csr_matrix(X)
|
|
|
|
# compute the singular values of X using the fast approximate method
|
|
Ua, sa, Va = randomized_svd(
|
|
X, k, power_iteration_normalizer=normalizer, random_state=0
|
|
)
|
|
if dtype.kind == "f":
|
|
assert Ua.dtype == dtype
|
|
assert sa.dtype == dtype
|
|
assert Va.dtype == dtype
|
|
else:
|
|
assert Ua.dtype.kind == "f"
|
|
assert sa.dtype.kind == "f"
|
|
assert Va.dtype.kind == "f"
|
|
|
|
assert_almost_equal(s[:rank], sa[:rank], decimal=decimal)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", (np.int32, np.int64, np.float32, np.float64))
|
|
def test_randomized_svd_low_rank_all_dtypes(dtype):
|
|
check_randomized_svd_low_rank(dtype)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", (np.int32, np.int64, np.float32, np.float64))
|
|
def test_randomized_eigsh(dtype):
|
|
"""Test that `_randomized_eigsh` returns the appropriate components"""
|
|
|
|
rng = np.random.RandomState(42)
|
|
X = np.diag(np.array([1.0, -2.0, 0.0, 3.0], dtype=dtype))
|
|
# random rotation that preserves the eigenvalues of X
|
|
rand_rot = np.linalg.qr(rng.normal(size=X.shape))[0]
|
|
X = rand_rot @ X @ rand_rot.T
|
|
|
|
# with 'module' selection method, the negative eigenvalue shows up
|
|
eigvals, eigvecs = _randomized_eigsh(X, n_components=2, selection="module")
|
|
# eigenvalues
|
|
assert eigvals.shape == (2,)
|
|
assert_array_almost_equal(eigvals, [3.0, -2.0]) # negative eigenvalue here
|
|
# eigenvectors
|
|
assert eigvecs.shape == (4, 2)
|
|
|
|
# with 'value' selection method, the negative eigenvalue does not show up
|
|
with pytest.raises(NotImplementedError):
|
|
_randomized_eigsh(X, n_components=2, selection="value")
|
|
|
|
|
|
@pytest.mark.parametrize("k", (10, 50, 100, 199, 200))
|
|
def test_randomized_eigsh_compared_to_others(k):
|
|
"""Check that `_randomized_eigsh` is similar to other `eigsh`
|
|
|
|
Tests that for a random PSD matrix, `_randomized_eigsh` provides results
|
|
comparable to LAPACK (scipy.linalg.eigh) and ARPACK
|
|
(scipy.sparse.linalg.eigsh).
|
|
|
|
Note: some versions of ARPACK do not support k=n_features.
|
|
"""
|
|
|
|
# make a random PSD matrix
|
|
n_features = 200
|
|
X = make_sparse_spd_matrix(n_features, random_state=0)
|
|
|
|
# compare two versions of randomized
|
|
# rough and fast
|
|
eigvals, eigvecs = _randomized_eigsh(
|
|
X, n_components=k, selection="module", n_iter=25, random_state=0
|
|
)
|
|
# more accurate but slow (TODO find realistic settings here)
|
|
eigvals_qr, eigvecs_qr = _randomized_eigsh(
|
|
X,
|
|
n_components=k,
|
|
n_iter=25,
|
|
n_oversamples=20,
|
|
random_state=0,
|
|
power_iteration_normalizer="QR",
|
|
selection="module",
|
|
)
|
|
|
|
# with LAPACK
|
|
eigvals_lapack, eigvecs_lapack = _eigh(
|
|
X, subset_by_index=(n_features - k, n_features - 1)
|
|
)
|
|
indices = eigvals_lapack.argsort()[::-1]
|
|
eigvals_lapack = eigvals_lapack[indices]
|
|
eigvecs_lapack = eigvecs_lapack[:, indices]
|
|
|
|
# -- eigenvalues comparison
|
|
assert eigvals_lapack.shape == (k,)
|
|
# comparison precision
|
|
assert_array_almost_equal(eigvals, eigvals_lapack, decimal=6)
|
|
assert_array_almost_equal(eigvals_qr, eigvals_lapack, decimal=6)
|
|
|
|
# -- eigenvectors comparison
|
|
assert eigvecs_lapack.shape == (n_features, k)
|
|
# flip eigenvectors' sign to enforce deterministic output
|
|
dummy_vecs = np.zeros_like(eigvecs).T
|
|
eigvecs, _ = svd_flip(eigvecs, dummy_vecs)
|
|
eigvecs_qr, _ = svd_flip(eigvecs_qr, dummy_vecs)
|
|
eigvecs_lapack, _ = svd_flip(eigvecs_lapack, dummy_vecs)
|
|
assert_array_almost_equal(eigvecs, eigvecs_lapack, decimal=4)
|
|
assert_array_almost_equal(eigvecs_qr, eigvecs_lapack, decimal=6)
|
|
|
|
# comparison ARPACK ~ LAPACK (some ARPACK implems do not support k=n)
|
|
if k < n_features:
|
|
v0 = _init_arpack_v0(n_features, random_state=0)
|
|
# "LA" largest algebraic <=> selection="value" in randomized_eigsh
|
|
eigvals_arpack, eigvecs_arpack = eigsh(
|
|
X, k, which="LA", tol=0, maxiter=None, v0=v0
|
|
)
|
|
indices = eigvals_arpack.argsort()[::-1]
|
|
# eigenvalues
|
|
eigvals_arpack = eigvals_arpack[indices]
|
|
assert_array_almost_equal(eigvals_lapack, eigvals_arpack, decimal=10)
|
|
# eigenvectors
|
|
eigvecs_arpack = eigvecs_arpack[:, indices]
|
|
eigvecs_arpack, _ = svd_flip(eigvecs_arpack, dummy_vecs)
|
|
assert_array_almost_equal(eigvecs_arpack, eigvecs_lapack, decimal=8)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"n,rank",
|
|
[
|
|
(10, 7),
|
|
(100, 10),
|
|
(100, 80),
|
|
(500, 10),
|
|
(500, 250),
|
|
(500, 400),
|
|
],
|
|
)
|
|
def test_randomized_eigsh_reconst_low_rank(n, rank):
|
|
"""Check that randomized_eigsh is able to reconstruct a low rank psd matrix
|
|
|
|
Tests that the decomposition provided by `_randomized_eigsh` leads to
|
|
orthonormal eigenvectors, and that a low rank PSD matrix can be effectively
|
|
reconstructed with good accuracy using it.
|
|
"""
|
|
assert rank < n
|
|
|
|
# create a low rank PSD
|
|
rng = np.random.RandomState(69)
|
|
X = rng.randn(n, rank)
|
|
A = X @ X.T
|
|
|
|
# approximate A with the "right" number of components
|
|
S, V = _randomized_eigsh(A, n_components=rank, random_state=rng)
|
|
# orthonormality checks
|
|
assert_array_almost_equal(np.linalg.norm(V, axis=0), np.ones(S.shape))
|
|
assert_array_almost_equal(V.T @ V, np.diag(np.ones(S.shape)))
|
|
# reconstruction
|
|
A_reconstruct = V @ np.diag(S) @ V.T
|
|
|
|
# test that the approximation is good
|
|
assert_array_almost_equal(A_reconstruct, A, decimal=6)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", (np.float32, np.float64))
|
|
def test_row_norms(dtype):
|
|
X = np.random.RandomState(42).randn(100, 100)
|
|
if dtype is np.float32:
|
|
precision = 4
|
|
else:
|
|
precision = 5
|
|
|
|
X = X.astype(dtype, copy=False)
|
|
sq_norm = (X**2).sum(axis=1)
|
|
|
|
assert_array_almost_equal(sq_norm, row_norms(X, squared=True), precision)
|
|
assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X), precision)
|
|
|
|
for csr_index_dtype in [np.int32, np.int64]:
|
|
Xcsr = sparse.csr_matrix(X, dtype=dtype)
|
|
# csr_matrix will use int32 indices by default,
|
|
# up-casting those to int64 when necessary
|
|
if csr_index_dtype is np.int64:
|
|
Xcsr.indptr = Xcsr.indptr.astype(csr_index_dtype, copy=False)
|
|
Xcsr.indices = Xcsr.indices.astype(csr_index_dtype, copy=False)
|
|
assert Xcsr.indices.dtype == csr_index_dtype
|
|
assert Xcsr.indptr.dtype == csr_index_dtype
|
|
assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True), precision)
|
|
assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr), precision)
|
|
|
|
|
|
def test_randomized_svd_low_rank_with_noise():
|
|
# Check that extmath.randomized_svd can handle noisy matrices
|
|
n_samples = 100
|
|
n_features = 500
|
|
rank = 5
|
|
k = 10
|
|
|
|
# generate a matrix X wity structure approximate rank `rank` and an
|
|
# important noisy component
|
|
X = make_low_rank_matrix(
|
|
n_samples=n_samples,
|
|
n_features=n_features,
|
|
effective_rank=rank,
|
|
tail_strength=0.1,
|
|
random_state=0,
|
|
)
|
|
assert X.shape == (n_samples, n_features)
|
|
|
|
# compute the singular values of X using the slow exact method
|
|
_, s, _ = linalg.svd(X, full_matrices=False)
|
|
|
|
for normalizer in ["auto", "none", "LU", "QR"]:
|
|
# compute the singular values of X using the fast approximate
|
|
# method without the iterated power method
|
|
_, sa, _ = randomized_svd(
|
|
X, k, n_iter=0, power_iteration_normalizer=normalizer, random_state=0
|
|
)
|
|
|
|
# the approximation does not tolerate the noise:
|
|
assert np.abs(s[:k] - sa).max() > 0.01
|
|
|
|
# compute the singular values of X using the fast approximate
|
|
# method with iterated power method
|
|
_, sap, _ = randomized_svd(
|
|
X, k, power_iteration_normalizer=normalizer, random_state=0
|
|
)
|
|
|
|
# the iterated power method is helping getting rid of the noise:
|
|
assert_almost_equal(s[:k], sap, decimal=3)
|
|
|
|
|
|
def test_randomized_svd_infinite_rank():
|
|
# Check that extmath.randomized_svd can handle noisy matrices
|
|
n_samples = 100
|
|
n_features = 500
|
|
rank = 5
|
|
k = 10
|
|
|
|
# let us try again without 'low_rank component': just regularly but slowly
|
|
# decreasing singular values: the rank of the data matrix is infinite
|
|
X = make_low_rank_matrix(
|
|
n_samples=n_samples,
|
|
n_features=n_features,
|
|
effective_rank=rank,
|
|
tail_strength=1.0,
|
|
random_state=0,
|
|
)
|
|
assert X.shape == (n_samples, n_features)
|
|
|
|
# compute the singular values of X using the slow exact method
|
|
_, s, _ = linalg.svd(X, full_matrices=False)
|
|
for normalizer in ["auto", "none", "LU", "QR"]:
|
|
# compute the singular values of X using the fast approximate method
|
|
# without the iterated power method
|
|
_, sa, _ = randomized_svd(
|
|
X, k, n_iter=0, power_iteration_normalizer=normalizer, random_state=0
|
|
)
|
|
|
|
# the approximation does not tolerate the noise:
|
|
assert np.abs(s[:k] - sa).max() > 0.1
|
|
|
|
# compute the singular values of X using the fast approximate method
|
|
# with iterated power method
|
|
_, sap, _ = randomized_svd(
|
|
X, k, n_iter=5, power_iteration_normalizer=normalizer, random_state=0
|
|
)
|
|
|
|
# the iterated power method is still managing to get most of the
|
|
# structure at the requested rank
|
|
assert_almost_equal(s[:k], sap, decimal=3)
|
|
|
|
|
|
def test_randomized_svd_transpose_consistency():
|
|
# Check that transposing the design matrix has limited impact
|
|
n_samples = 100
|
|
n_features = 500
|
|
rank = 4
|
|
k = 10
|
|
|
|
X = make_low_rank_matrix(
|
|
n_samples=n_samples,
|
|
n_features=n_features,
|
|
effective_rank=rank,
|
|
tail_strength=0.5,
|
|
random_state=0,
|
|
)
|
|
assert X.shape == (n_samples, n_features)
|
|
|
|
U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False, random_state=0)
|
|
U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True, random_state=0)
|
|
U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose="auto", random_state=0)
|
|
U4, s4, V4 = linalg.svd(X, full_matrices=False)
|
|
|
|
assert_almost_equal(s1, s4[:k], decimal=3)
|
|
assert_almost_equal(s2, s4[:k], decimal=3)
|
|
assert_almost_equal(s3, s4[:k], decimal=3)
|
|
|
|
assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]), decimal=2)
|
|
assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]), decimal=2)
|
|
|
|
# in this case 'auto' is equivalent to transpose
|
|
assert_almost_equal(s2, s3)
|
|
|
|
|
|
def test_randomized_svd_power_iteration_normalizer():
|
|
# randomized_svd with power_iteration_normalized='none' diverges for
|
|
# large number of power iterations on this dataset
|
|
rng = np.random.RandomState(42)
|
|
X = make_low_rank_matrix(100, 500, effective_rank=50, random_state=rng)
|
|
X += 3 * rng.randint(0, 2, size=X.shape)
|
|
n_components = 50
|
|
|
|
# Check that it diverges with many (non-normalized) power iterations
|
|
U, s, Vt = randomized_svd(
|
|
X, n_components, n_iter=2, power_iteration_normalizer="none", random_state=0
|
|
)
|
|
A = X - U.dot(np.diag(s).dot(Vt))
|
|
error_2 = linalg.norm(A, ord="fro")
|
|
U, s, Vt = randomized_svd(
|
|
X, n_components, n_iter=20, power_iteration_normalizer="none", random_state=0
|
|
)
|
|
A = X - U.dot(np.diag(s).dot(Vt))
|
|
error_20 = linalg.norm(A, ord="fro")
|
|
assert np.abs(error_2 - error_20) > 100
|
|
|
|
for normalizer in ["LU", "QR", "auto"]:
|
|
U, s, Vt = randomized_svd(
|
|
X,
|
|
n_components,
|
|
n_iter=2,
|
|
power_iteration_normalizer=normalizer,
|
|
random_state=0,
|
|
)
|
|
A = X - U.dot(np.diag(s).dot(Vt))
|
|
error_2 = linalg.norm(A, ord="fro")
|
|
|
|
for i in [5, 10, 50]:
|
|
U, s, Vt = randomized_svd(
|
|
X,
|
|
n_components,
|
|
n_iter=i,
|
|
power_iteration_normalizer=normalizer,
|
|
random_state=0,
|
|
)
|
|
A = X - U.dot(np.diag(s).dot(Vt))
|
|
error = linalg.norm(A, ord="fro")
|
|
assert 15 > np.abs(error_2 - error)
|
|
|
|
|
|
def test_randomized_svd_sparse_warnings():
|
|
# randomized_svd throws a warning for lil and dok matrix
|
|
rng = np.random.RandomState(42)
|
|
X = make_low_rank_matrix(50, 20, effective_rank=10, random_state=rng)
|
|
n_components = 5
|
|
for cls in (sparse.lil_matrix, sparse.dok_matrix):
|
|
X = cls(X)
|
|
warn_msg = (
|
|
"Calculating SVD of a {} is expensive. "
|
|
"csr_matrix is more efficient.".format(cls.__name__)
|
|
)
|
|
with pytest.warns(sparse.SparseEfficiencyWarning, match=warn_msg):
|
|
randomized_svd(X, n_components, n_iter=1, power_iteration_normalizer="none")
|
|
|
|
|
|
def test_svd_flip():
|
|
# Check that svd_flip works in both situations, and reconstructs input.
|
|
rs = np.random.RandomState(1999)
|
|
n_samples = 20
|
|
n_features = 10
|
|
X = rs.randn(n_samples, n_features)
|
|
|
|
# Check matrix reconstruction
|
|
U, S, Vt = linalg.svd(X, full_matrices=False)
|
|
U1, V1 = svd_flip(U, Vt, u_based_decision=False)
|
|
assert_almost_equal(np.dot(U1 * S, V1), X, decimal=6)
|
|
|
|
# Check transposed matrix reconstruction
|
|
XT = X.T
|
|
U, S, Vt = linalg.svd(XT, full_matrices=False)
|
|
U2, V2 = svd_flip(U, Vt, u_based_decision=True)
|
|
assert_almost_equal(np.dot(U2 * S, V2), XT, decimal=6)
|
|
|
|
# Check that different flip methods are equivalent under reconstruction
|
|
U_flip1, V_flip1 = svd_flip(U, Vt, u_based_decision=True)
|
|
assert_almost_equal(np.dot(U_flip1 * S, V_flip1), XT, decimal=6)
|
|
U_flip2, V_flip2 = svd_flip(U, Vt, u_based_decision=False)
|
|
assert_almost_equal(np.dot(U_flip2 * S, V_flip2), XT, decimal=6)
|
|
|
|
|
|
def test_randomized_svd_sign_flip():
|
|
a = np.array([[2.0, 0.0], [0.0, 1.0]])
|
|
u1, s1, v1 = randomized_svd(a, 2, flip_sign=True, random_state=41)
|
|
for seed in range(10):
|
|
u2, s2, v2 = randomized_svd(a, 2, flip_sign=True, random_state=seed)
|
|
assert_almost_equal(u1, u2)
|
|
assert_almost_equal(v1, v2)
|
|
assert_almost_equal(np.dot(u2 * s2, v2), a)
|
|
assert_almost_equal(np.dot(u2.T, u2), np.eye(2))
|
|
assert_almost_equal(np.dot(v2.T, v2), np.eye(2))
|
|
|
|
|
|
def test_randomized_svd_sign_flip_with_transpose():
|
|
# Check if the randomized_svd sign flipping is always done based on u
|
|
# irrespective of transpose.
|
|
# See https://github.com/scikit-learn/scikit-learn/issues/5608
|
|
# for more details.
|
|
def max_loading_is_positive(u, v):
|
|
"""
|
|
returns bool tuple indicating if the values maximising np.abs
|
|
are positive across all rows for u and across all columns for v.
|
|
"""
|
|
u_based = (np.abs(u).max(axis=0) == u.max(axis=0)).all()
|
|
v_based = (np.abs(v).max(axis=1) == v.max(axis=1)).all()
|
|
return u_based, v_based
|
|
|
|
mat = np.arange(10 * 8).reshape(10, -1)
|
|
|
|
# Without transpose
|
|
u_flipped, _, v_flipped = randomized_svd(mat, 3, flip_sign=True, random_state=0)
|
|
u_based, v_based = max_loading_is_positive(u_flipped, v_flipped)
|
|
assert u_based
|
|
assert not v_based
|
|
|
|
# With transpose
|
|
u_flipped_with_transpose, _, v_flipped_with_transpose = randomized_svd(
|
|
mat, 3, flip_sign=True, transpose=True, random_state=0
|
|
)
|
|
u_based, v_based = max_loading_is_positive(
|
|
u_flipped_with_transpose, v_flipped_with_transpose
|
|
)
|
|
assert u_based
|
|
assert not v_based
|
|
|
|
|
|
@pytest.mark.parametrize("n", [50, 100, 300])
|
|
@pytest.mark.parametrize("m", [50, 100, 300])
|
|
@pytest.mark.parametrize("k", [10, 20, 50])
|
|
@pytest.mark.parametrize("seed", range(5))
|
|
def test_randomized_svd_lapack_driver(n, m, k, seed):
|
|
# Check that different SVD drivers provide consistent results
|
|
|
|
# Matrix being compressed
|
|
rng = np.random.RandomState(seed)
|
|
X = rng.rand(n, m)
|
|
|
|
# Number of components
|
|
u1, s1, vt1 = randomized_svd(X, k, svd_lapack_driver="gesdd", random_state=0)
|
|
u2, s2, vt2 = randomized_svd(X, k, svd_lapack_driver="gesvd", random_state=0)
|
|
|
|
# Check shape and contents
|
|
assert u1.shape == u2.shape
|
|
assert_allclose(u1, u2, atol=0, rtol=1e-3)
|
|
|
|
assert s1.shape == s2.shape
|
|
assert_allclose(s1, s2, atol=0, rtol=1e-3)
|
|
|
|
assert vt1.shape == vt2.shape
|
|
assert_allclose(vt1, vt2, atol=0, rtol=1e-3)
|
|
|
|
|
|
def test_cartesian():
|
|
# Check if cartesian product delivers the right results
|
|
|
|
axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7]))
|
|
|
|
true_out = np.array(
|
|
[
|
|
[1, 4, 6],
|
|
[1, 4, 7],
|
|
[1, 5, 6],
|
|
[1, 5, 7],
|
|
[2, 4, 6],
|
|
[2, 4, 7],
|
|
[2, 5, 6],
|
|
[2, 5, 7],
|
|
[3, 4, 6],
|
|
[3, 4, 7],
|
|
[3, 5, 6],
|
|
[3, 5, 7],
|
|
]
|
|
)
|
|
|
|
out = cartesian(axes)
|
|
assert_array_equal(true_out, out)
|
|
|
|
# check single axis
|
|
x = np.arange(3)
|
|
assert_array_equal(x[:, np.newaxis], cartesian((x,)))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"arrays, output_dtype",
|
|
[
|
|
(
|
|
[np.array([1, 2, 3], dtype=np.int32), np.array([4, 5], dtype=np.int64)],
|
|
np.dtype(np.int64),
|
|
),
|
|
(
|
|
[np.array([1, 2, 3], dtype=np.int32), np.array([4, 5], dtype=np.float64)],
|
|
np.dtype(np.float64),
|
|
),
|
|
(
|
|
[np.array([1, 2, 3], dtype=np.int32), np.array(["x", "y"], dtype=object)],
|
|
np.dtype(object),
|
|
),
|
|
],
|
|
)
|
|
def test_cartesian_mix_types(arrays, output_dtype):
|
|
"""Check that the cartesian product works with mixed types."""
|
|
output = cartesian(arrays)
|
|
|
|
assert output.dtype == output_dtype
|
|
|
|
|
|
def test_logistic_sigmoid():
|
|
# Check correctness and robustness of logistic sigmoid implementation
|
|
def naive_log_logistic(x):
|
|
return np.log(expit(x))
|
|
|
|
x = np.linspace(-2, 2, 50)
|
|
assert_array_almost_equal(log_logistic(x), naive_log_logistic(x))
|
|
|
|
extreme_x = np.array([-100.0, 100.0])
|
|
assert_array_almost_equal(log_logistic(extreme_x), [-100, 0])
|
|
|
|
|
|
@pytest.fixture()
|
|
def rng():
|
|
return np.random.RandomState(42)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
def test_incremental_weighted_mean_and_variance_simple(rng, dtype):
|
|
mult = 10
|
|
X = rng.rand(1000, 20).astype(dtype) * mult
|
|
sample_weight = rng.rand(X.shape[0]) * mult
|
|
mean, var, _ = _incremental_mean_and_var(X, 0, 0, 0, sample_weight=sample_weight)
|
|
|
|
expected_mean = np.average(X, weights=sample_weight, axis=0)
|
|
expected_var = (
|
|
np.average(X**2, weights=sample_weight, axis=0) - expected_mean**2
|
|
)
|
|
assert_almost_equal(mean, expected_mean)
|
|
assert_almost_equal(var, expected_var)
|
|
|
|
|
|
@pytest.mark.parametrize("mean", [0, 1e7, -1e7])
|
|
@pytest.mark.parametrize("var", [1, 1e-8, 1e5])
|
|
@pytest.mark.parametrize(
|
|
"weight_loc, weight_scale", [(0, 1), (0, 1e-8), (1, 1e-8), (10, 1), (1e7, 1)]
|
|
)
|
|
def test_incremental_weighted_mean_and_variance(
|
|
mean, var, weight_loc, weight_scale, rng
|
|
):
|
|
|
|
# Testing of correctness and numerical stability
|
|
def _assert(X, sample_weight, expected_mean, expected_var):
|
|
n = X.shape[0]
|
|
for chunk_size in [1, n // 10 + 1, n // 4 + 1, n // 2 + 1, n]:
|
|
last_mean, last_weight_sum, last_var = 0, 0, 0
|
|
for batch in gen_batches(n, chunk_size):
|
|
last_mean, last_var, last_weight_sum = _incremental_mean_and_var(
|
|
X[batch],
|
|
last_mean,
|
|
last_var,
|
|
last_weight_sum,
|
|
sample_weight=sample_weight[batch],
|
|
)
|
|
assert_allclose(last_mean, expected_mean)
|
|
assert_allclose(last_var, expected_var, atol=1e-6)
|
|
|
|
size = (100, 20)
|
|
weight = rng.normal(loc=weight_loc, scale=weight_scale, size=size[0])
|
|
|
|
# Compare to weighted average: np.average
|
|
X = rng.normal(loc=mean, scale=var, size=size)
|
|
expected_mean = _safe_accumulator_op(np.average, X, weights=weight, axis=0)
|
|
expected_var = _safe_accumulator_op(
|
|
np.average, (X - expected_mean) ** 2, weights=weight, axis=0
|
|
)
|
|
_assert(X, weight, expected_mean, expected_var)
|
|
|
|
# Compare to unweighted mean: np.mean
|
|
X = rng.normal(loc=mean, scale=var, size=size)
|
|
ones_weight = np.ones(size[0])
|
|
expected_mean = _safe_accumulator_op(np.mean, X, axis=0)
|
|
expected_var = _safe_accumulator_op(np.var, X, axis=0)
|
|
_assert(X, ones_weight, expected_mean, expected_var)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
def test_incremental_weighted_mean_and_variance_ignore_nan(dtype):
|
|
old_means = np.array([535.0, 535.0, 535.0, 535.0])
|
|
old_variances = np.array([4225.0, 4225.0, 4225.0, 4225.0])
|
|
old_weight_sum = np.array([2, 2, 2, 2], dtype=np.int32)
|
|
sample_weights_X = np.ones(3)
|
|
sample_weights_X_nan = np.ones(4)
|
|
|
|
X = np.array(
|
|
[[170, 170, 170, 170], [430, 430, 430, 430], [300, 300, 300, 300]]
|
|
).astype(dtype)
|
|
|
|
X_nan = np.array(
|
|
[
|
|
[170, np.nan, 170, 170],
|
|
[np.nan, 170, 430, 430],
|
|
[430, 430, np.nan, 300],
|
|
[300, 300, 300, np.nan],
|
|
]
|
|
).astype(dtype)
|
|
|
|
X_means, X_variances, X_count = _incremental_mean_and_var(
|
|
X, old_means, old_variances, old_weight_sum, sample_weight=sample_weights_X
|
|
)
|
|
X_nan_means, X_nan_variances, X_nan_count = _incremental_mean_and_var(
|
|
X_nan,
|
|
old_means,
|
|
old_variances,
|
|
old_weight_sum,
|
|
sample_weight=sample_weights_X_nan,
|
|
)
|
|
|
|
assert_allclose(X_nan_means, X_means)
|
|
assert_allclose(X_nan_variances, X_variances)
|
|
assert_allclose(X_nan_count, X_count)
|
|
|
|
|
|
def test_incremental_variance_update_formulas():
|
|
# Test Youngs and Cramer incremental variance formulas.
|
|
# Doggie data from https://www.mathsisfun.com/data/standard-deviation.html
|
|
A = np.array(
|
|
[
|
|
[600, 470, 170, 430, 300],
|
|
[600, 470, 170, 430, 300],
|
|
[600, 470, 170, 430, 300],
|
|
[600, 470, 170, 430, 300],
|
|
]
|
|
).T
|
|
idx = 2
|
|
X1 = A[:idx, :]
|
|
X2 = A[idx:, :]
|
|
|
|
old_means = X1.mean(axis=0)
|
|
old_variances = X1.var(axis=0)
|
|
old_sample_count = np.full(X1.shape[1], X1.shape[0], dtype=np.int32)
|
|
final_means, final_variances, final_count = _incremental_mean_and_var(
|
|
X2, old_means, old_variances, old_sample_count
|
|
)
|
|
assert_almost_equal(final_means, A.mean(axis=0), 6)
|
|
assert_almost_equal(final_variances, A.var(axis=0), 6)
|
|
assert_almost_equal(final_count, A.shape[0])
|
|
|
|
|
|
def test_incremental_mean_and_variance_ignore_nan():
|
|
old_means = np.array([535.0, 535.0, 535.0, 535.0])
|
|
old_variances = np.array([4225.0, 4225.0, 4225.0, 4225.0])
|
|
old_sample_count = np.array([2, 2, 2, 2], dtype=np.int32)
|
|
|
|
X = np.array([[170, 170, 170, 170], [430, 430, 430, 430], [300, 300, 300, 300]])
|
|
|
|
X_nan = np.array(
|
|
[
|
|
[170, np.nan, 170, 170],
|
|
[np.nan, 170, 430, 430],
|
|
[430, 430, np.nan, 300],
|
|
[300, 300, 300, np.nan],
|
|
]
|
|
)
|
|
|
|
X_means, X_variances, X_count = _incremental_mean_and_var(
|
|
X, old_means, old_variances, old_sample_count
|
|
)
|
|
X_nan_means, X_nan_variances, X_nan_count = _incremental_mean_and_var(
|
|
X_nan, old_means, old_variances, old_sample_count
|
|
)
|
|
|
|
assert_allclose(X_nan_means, X_means)
|
|
assert_allclose(X_nan_variances, X_variances)
|
|
assert_allclose(X_nan_count, X_count)
|
|
|
|
|
|
@skip_if_32bit
|
|
def test_incremental_variance_numerical_stability():
|
|
# Test Youngs and Cramer incremental variance formulas.
|
|
|
|
def np_var(A):
|
|
return A.var(axis=0)
|
|
|
|
# Naive one pass variance computation - not numerically stable
|
|
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
|
|
def one_pass_var(X):
|
|
n = X.shape[0]
|
|
exp_x2 = (X**2).sum(axis=0) / n
|
|
expx_2 = (X.sum(axis=0) / n) ** 2
|
|
return exp_x2 - expx_2
|
|
|
|
# Two-pass algorithm, stable.
|
|
# We use it as a benchmark. It is not an online algorithm
|
|
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Two-pass_algorithm
|
|
def two_pass_var(X):
|
|
mean = X.mean(axis=0)
|
|
Y = X.copy()
|
|
return np.mean((Y - mean) ** 2, axis=0)
|
|
|
|
# Naive online implementation
|
|
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm
|
|
# This works only for chunks for size 1
|
|
def naive_mean_variance_update(x, last_mean, last_variance, last_sample_count):
|
|
updated_sample_count = last_sample_count + 1
|
|
samples_ratio = last_sample_count / float(updated_sample_count)
|
|
updated_mean = x / updated_sample_count + last_mean * samples_ratio
|
|
updated_variance = (
|
|
last_variance * samples_ratio
|
|
+ (x - last_mean) * (x - updated_mean) / updated_sample_count
|
|
)
|
|
return updated_mean, updated_variance, updated_sample_count
|
|
|
|
# We want to show a case when one_pass_var has error > 1e-3 while
|
|
# _batch_mean_variance_update has less.
|
|
tol = 200
|
|
n_features = 2
|
|
n_samples = 10000
|
|
x1 = np.array(1e8, dtype=np.float64)
|
|
x2 = np.log(1e-5, dtype=np.float64)
|
|
A0 = np.full((n_samples // 2, n_features), x1, dtype=np.float64)
|
|
A1 = np.full((n_samples // 2, n_features), x2, dtype=np.float64)
|
|
A = np.vstack((A0, A1))
|
|
|
|
# Naive one pass var: >tol (=1063)
|
|
assert np.abs(np_var(A) - one_pass_var(A)).max() > tol
|
|
|
|
# Starting point for online algorithms: after A0
|
|
|
|
# Naive implementation: >tol (436)
|
|
mean, var, n = A0[0, :], np.zeros(n_features), n_samples // 2
|
|
for i in range(A1.shape[0]):
|
|
mean, var, n = naive_mean_variance_update(A1[i, :], mean, var, n)
|
|
assert n == A.shape[0]
|
|
# the mean is also slightly unstable
|
|
assert np.abs(A.mean(axis=0) - mean).max() > 1e-6
|
|
assert np.abs(np_var(A) - var).max() > tol
|
|
|
|
# Robust implementation: <tol (177)
|
|
mean, var = A0[0, :], np.zeros(n_features)
|
|
n = np.full(n_features, n_samples // 2, dtype=np.int32)
|
|
for i in range(A1.shape[0]):
|
|
mean, var, n = _incremental_mean_and_var(
|
|
A1[i, :].reshape((1, A1.shape[1])), mean, var, n
|
|
)
|
|
assert_array_equal(n, A.shape[0])
|
|
assert_array_almost_equal(A.mean(axis=0), mean)
|
|
assert tol > np.abs(np_var(A) - var).max()
|
|
|
|
|
|
def test_incremental_variance_ddof():
|
|
# Test that degrees of freedom parameter for calculations are correct.
|
|
rng = np.random.RandomState(1999)
|
|
X = rng.randn(50, 10)
|
|
n_samples, n_features = X.shape
|
|
for batch_size in [11, 20, 37]:
|
|
steps = np.arange(0, X.shape[0], batch_size)
|
|
if steps[-1] != X.shape[0]:
|
|
steps = np.hstack([steps, n_samples])
|
|
|
|
for i, j in zip(steps[:-1], steps[1:]):
|
|
batch = X[i:j, :]
|
|
if i == 0:
|
|
incremental_means = batch.mean(axis=0)
|
|
incremental_variances = batch.var(axis=0)
|
|
# Assign this twice so that the test logic is consistent
|
|
incremental_count = batch.shape[0]
|
|
sample_count = np.full(batch.shape[1], batch.shape[0], dtype=np.int32)
|
|
else:
|
|
result = _incremental_mean_and_var(
|
|
batch, incremental_means, incremental_variances, sample_count
|
|
)
|
|
(incremental_means, incremental_variances, incremental_count) = result
|
|
sample_count += batch.shape[0]
|
|
|
|
calculated_means = np.mean(X[:j], axis=0)
|
|
calculated_variances = np.var(X[:j], axis=0)
|
|
assert_almost_equal(incremental_means, calculated_means, 6)
|
|
assert_almost_equal(incremental_variances, calculated_variances, 6)
|
|
assert_array_equal(incremental_count, sample_count)
|
|
|
|
|
|
def test_vector_sign_flip():
|
|
# Testing that sign flip is working & largest value has positive sign
|
|
data = np.random.RandomState(36).randn(5, 5)
|
|
max_abs_rows = np.argmax(np.abs(data), axis=1)
|
|
data_flipped = _deterministic_vector_sign_flip(data)
|
|
max_rows = np.argmax(data_flipped, axis=1)
|
|
assert_array_equal(max_abs_rows, max_rows)
|
|
signs = np.sign(data[range(data.shape[0]), max_abs_rows])
|
|
assert_array_equal(data, data_flipped * signs[:, np.newaxis])
|
|
|
|
|
|
def test_softmax():
|
|
rng = np.random.RandomState(0)
|
|
X = rng.randn(3, 5)
|
|
exp_X = np.exp(X)
|
|
sum_exp_X = np.sum(exp_X, axis=1).reshape((-1, 1))
|
|
assert_array_almost_equal(softmax(X), exp_X / sum_exp_X)
|
|
|
|
|
|
def test_stable_cumsum():
|
|
assert_array_equal(stable_cumsum([1, 2, 3]), np.cumsum([1, 2, 3]))
|
|
r = np.random.RandomState(0).rand(100000)
|
|
with pytest.warns(RuntimeWarning):
|
|
stable_cumsum(r, rtol=0, atol=0)
|
|
|
|
# test axis parameter
|
|
A = np.random.RandomState(36).randint(1000, size=(5, 5, 5))
|
|
assert_array_equal(stable_cumsum(A, axis=0), np.cumsum(A, axis=0))
|
|
assert_array_equal(stable_cumsum(A, axis=1), np.cumsum(A, axis=1))
|
|
assert_array_equal(stable_cumsum(A, axis=2), np.cumsum(A, axis=2))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"A_array_constr", [np.array, sparse.csr_matrix], ids=["dense", "sparse"]
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"B_array_constr", [np.array, sparse.csr_matrix], ids=["dense", "sparse"]
|
|
)
|
|
def test_safe_sparse_dot_2d(A_array_constr, B_array_constr):
|
|
rng = np.random.RandomState(0)
|
|
|
|
A = rng.random_sample((30, 10))
|
|
B = rng.random_sample((10, 20))
|
|
expected = np.dot(A, B)
|
|
|
|
A = A_array_constr(A)
|
|
B = B_array_constr(B)
|
|
actual = safe_sparse_dot(A, B, dense_output=True)
|
|
|
|
assert_allclose(actual, expected)
|
|
|
|
|
|
def test_safe_sparse_dot_nd():
|
|
rng = np.random.RandomState(0)
|
|
|
|
# dense ND / sparse
|
|
A = rng.random_sample((2, 3, 4, 5, 6))
|
|
B = rng.random_sample((6, 7))
|
|
expected = np.dot(A, B)
|
|
B = sparse.csr_matrix(B)
|
|
actual = safe_sparse_dot(A, B)
|
|
assert_allclose(actual, expected)
|
|
|
|
# sparse / dense ND
|
|
A = rng.random_sample((2, 3))
|
|
B = rng.random_sample((4, 5, 3, 6))
|
|
expected = np.dot(A, B)
|
|
A = sparse.csr_matrix(A)
|
|
actual = safe_sparse_dot(A, B)
|
|
assert_allclose(actual, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"A_array_constr", [np.array, sparse.csr_matrix], ids=["dense", "sparse"]
|
|
)
|
|
def test_safe_sparse_dot_2d_1d(A_array_constr):
|
|
rng = np.random.RandomState(0)
|
|
|
|
B = rng.random_sample((10))
|
|
|
|
# 2D @ 1D
|
|
A = rng.random_sample((30, 10))
|
|
expected = np.dot(A, B)
|
|
A = A_array_constr(A)
|
|
actual = safe_sparse_dot(A, B)
|
|
assert_allclose(actual, expected)
|
|
|
|
# 1D @ 2D
|
|
A = rng.random_sample((10, 30))
|
|
expected = np.dot(B, A)
|
|
A = A_array_constr(A)
|
|
actual = safe_sparse_dot(B, A)
|
|
assert_allclose(actual, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("dense_output", [True, False])
|
|
def test_safe_sparse_dot_dense_output(dense_output):
|
|
rng = np.random.RandomState(0)
|
|
|
|
A = sparse.random(30, 10, density=0.1, random_state=rng)
|
|
B = sparse.random(10, 20, density=0.1, random_state=rng)
|
|
|
|
expected = A.dot(B)
|
|
actual = safe_sparse_dot(A, B, dense_output=dense_output)
|
|
|
|
assert sparse.issparse(actual) == (not dense_output)
|
|
|
|
if dense_output:
|
|
expected = expected.toarray()
|
|
assert_allclose_dense_sparse(actual, expected)
|