141 lines
3.9 KiB
Python
141 lines
3.9 KiB
Python
"""
|
|
Functions in the ``as*array`` family that promote array-likes into arrays.
|
|
|
|
`require` fits this category despite its name not matching this pattern.
|
|
"""
|
|
from .overrides import (
|
|
array_function_dispatch,
|
|
set_array_function_like_doc,
|
|
set_module,
|
|
)
|
|
from .multiarray import array, asanyarray
|
|
|
|
|
|
__all__ = ["require"]
|
|
|
|
|
|
POSSIBLE_FLAGS = {
|
|
'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C',
|
|
'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F',
|
|
'A': 'A', 'ALIGNED': 'A',
|
|
'W': 'W', 'WRITEABLE': 'W',
|
|
'O': 'O', 'OWNDATA': 'O',
|
|
'E': 'E', 'ENSUREARRAY': 'E'
|
|
}
|
|
|
|
|
|
def _require_dispatcher(a, dtype=None, requirements=None, *, like=None):
|
|
return (like,)
|
|
|
|
|
|
@set_array_function_like_doc
|
|
@set_module('numpy')
|
|
def require(a, dtype=None, requirements=None, *, like=None):
|
|
"""
|
|
Return an ndarray of the provided type that satisfies requirements.
|
|
|
|
This function is useful to be sure that an array with the correct flags
|
|
is returned for passing to compiled code (perhaps through ctypes).
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
The object to be converted to a type-and-requirement-satisfying array.
|
|
dtype : data-type
|
|
The required data-type. If None preserve the current dtype. If your
|
|
application requires the data to be in native byteorder, include
|
|
a byteorder specification as a part of the dtype specification.
|
|
requirements : str or sequence of str
|
|
The requirements list can be any of the following
|
|
|
|
* 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
|
|
* 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
|
|
* 'ALIGNED' ('A') - ensure a data-type aligned array
|
|
* 'WRITEABLE' ('W') - ensure a writable array
|
|
* 'OWNDATA' ('O') - ensure an array that owns its own data
|
|
* 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass
|
|
${ARRAY_FUNCTION_LIKE}
|
|
|
|
.. versionadded:: 1.20.0
|
|
|
|
Returns
|
|
-------
|
|
out : ndarray
|
|
Array with specified requirements and type if given.
|
|
|
|
See Also
|
|
--------
|
|
asarray : Convert input to an ndarray.
|
|
asanyarray : Convert to an ndarray, but pass through ndarray subclasses.
|
|
ascontiguousarray : Convert input to a contiguous array.
|
|
asfortranarray : Convert input to an ndarray with column-major
|
|
memory order.
|
|
ndarray.flags : Information about the memory layout of the array.
|
|
|
|
Notes
|
|
-----
|
|
The returned array will be guaranteed to have the listed requirements
|
|
by making a copy if needed.
|
|
|
|
Examples
|
|
--------
|
|
>>> x = np.arange(6).reshape(2,3)
|
|
>>> x.flags
|
|
C_CONTIGUOUS : True
|
|
F_CONTIGUOUS : False
|
|
OWNDATA : False
|
|
WRITEABLE : True
|
|
ALIGNED : True
|
|
WRITEBACKIFCOPY : False
|
|
|
|
>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
|
|
>>> y.flags
|
|
C_CONTIGUOUS : False
|
|
F_CONTIGUOUS : True
|
|
OWNDATA : True
|
|
WRITEABLE : True
|
|
ALIGNED : True
|
|
WRITEBACKIFCOPY : False
|
|
|
|
"""
|
|
if like is not None:
|
|
return _require_with_like(
|
|
a,
|
|
dtype=dtype,
|
|
requirements=requirements,
|
|
like=like,
|
|
)
|
|
|
|
if not requirements:
|
|
return asanyarray(a, dtype=dtype)
|
|
|
|
requirements = {POSSIBLE_FLAGS[x.upper()] for x in requirements}
|
|
|
|
if 'E' in requirements:
|
|
requirements.remove('E')
|
|
subok = False
|
|
else:
|
|
subok = True
|
|
|
|
order = 'A'
|
|
if requirements >= {'C', 'F'}:
|
|
raise ValueError('Cannot specify both "C" and "F" order')
|
|
elif 'F' in requirements:
|
|
order = 'F'
|
|
requirements.remove('F')
|
|
elif 'C' in requirements:
|
|
order = 'C'
|
|
requirements.remove('C')
|
|
|
|
arr = array(a, dtype=dtype, order=order, copy=False, subok=subok)
|
|
|
|
for prop in requirements:
|
|
if not arr.flags[prop]:
|
|
return arr.copy(order)
|
|
return arr
|
|
|
|
|
|
_require_with_like = array_function_dispatch(
|
|
_require_dispatcher, use_like=True
|
|
)(require)
|