226 lines
8.2 KiB
Python
226 lines
8.2 KiB
Python
"""Implementation of __array_function__ overrides from NEP-18."""
|
|
import collections
|
|
import functools
|
|
import os
|
|
|
|
from numpy.core._multiarray_umath import (
|
|
add_docstring, implement_array_function, _get_implementing_args)
|
|
from numpy.compat._inspect import getargspec
|
|
|
|
|
|
ARRAY_FUNCTION_ENABLED = bool(
|
|
int(os.environ.get('NUMPY_EXPERIMENTAL_ARRAY_FUNCTION', 1)))
|
|
|
|
array_function_like_doc = (
|
|
"""like : array_like, optional
|
|
Reference object to allow the creation of arrays which are not
|
|
NumPy arrays. If an array-like passed in as ``like`` supports
|
|
the ``__array_function__`` protocol, the result will be defined
|
|
by it. In this case, it ensures the creation of an array object
|
|
compatible with that passed in via this argument."""
|
|
)
|
|
|
|
def set_array_function_like_doc(public_api):
|
|
if public_api.__doc__ is not None:
|
|
public_api.__doc__ = public_api.__doc__.replace(
|
|
"${ARRAY_FUNCTION_LIKE}",
|
|
array_function_like_doc,
|
|
)
|
|
return public_api
|
|
|
|
|
|
add_docstring(
|
|
implement_array_function,
|
|
"""
|
|
Implement a function with checks for __array_function__ overrides.
|
|
|
|
All arguments are required, and can only be passed by position.
|
|
|
|
Parameters
|
|
----------
|
|
implementation : function
|
|
Function that implements the operation on NumPy array without
|
|
overrides when called like ``implementation(*args, **kwargs)``.
|
|
public_api : function
|
|
Function exposed by NumPy's public API originally called like
|
|
``public_api(*args, **kwargs)`` on which arguments are now being
|
|
checked.
|
|
relevant_args : iterable
|
|
Iterable of arguments to check for __array_function__ methods.
|
|
args : tuple
|
|
Arbitrary positional arguments originally passed into ``public_api``.
|
|
kwargs : dict
|
|
Arbitrary keyword arguments originally passed into ``public_api``.
|
|
|
|
Returns
|
|
-------
|
|
Result from calling ``implementation()`` or an ``__array_function__``
|
|
method, as appropriate.
|
|
|
|
Raises
|
|
------
|
|
TypeError : if no implementation is found.
|
|
""")
|
|
|
|
|
|
# exposed for testing purposes; used internally by implement_array_function
|
|
add_docstring(
|
|
_get_implementing_args,
|
|
"""
|
|
Collect arguments on which to call __array_function__.
|
|
|
|
Parameters
|
|
----------
|
|
relevant_args : iterable of array-like
|
|
Iterable of possibly array-like arguments to check for
|
|
__array_function__ methods.
|
|
|
|
Returns
|
|
-------
|
|
Sequence of arguments with __array_function__ methods, in the order in
|
|
which they should be called.
|
|
""")
|
|
|
|
|
|
ArgSpec = collections.namedtuple('ArgSpec', 'args varargs keywords defaults')
|
|
|
|
|
|
def verify_matching_signatures(implementation, dispatcher):
|
|
"""Verify that a dispatcher function has the right signature."""
|
|
implementation_spec = ArgSpec(*getargspec(implementation))
|
|
dispatcher_spec = ArgSpec(*getargspec(dispatcher))
|
|
|
|
if (implementation_spec.args != dispatcher_spec.args or
|
|
implementation_spec.varargs != dispatcher_spec.varargs or
|
|
implementation_spec.keywords != dispatcher_spec.keywords or
|
|
(bool(implementation_spec.defaults) !=
|
|
bool(dispatcher_spec.defaults)) or
|
|
(implementation_spec.defaults is not None and
|
|
len(implementation_spec.defaults) !=
|
|
len(dispatcher_spec.defaults))):
|
|
raise RuntimeError('implementation and dispatcher for %s have '
|
|
'different function signatures' % implementation)
|
|
|
|
if implementation_spec.defaults is not None:
|
|
if dispatcher_spec.defaults != (None,) * len(dispatcher_spec.defaults):
|
|
raise RuntimeError('dispatcher functions can only use None for '
|
|
'default argument values')
|
|
|
|
|
|
def set_module(module):
|
|
"""Decorator for overriding __module__ on a function or class.
|
|
|
|
Example usage::
|
|
|
|
@set_module('numpy')
|
|
def example():
|
|
pass
|
|
|
|
assert example.__module__ == 'numpy'
|
|
"""
|
|
def decorator(func):
|
|
if module is not None:
|
|
func.__module__ = module
|
|
return func
|
|
return decorator
|
|
|
|
|
|
def array_function_dispatch(dispatcher, module=None, verify=True,
|
|
docs_from_dispatcher=False, use_like=False):
|
|
"""Decorator for adding dispatch with the __array_function__ protocol.
|
|
|
|
See NEP-18 for example usage.
|
|
|
|
Parameters
|
|
----------
|
|
dispatcher : callable
|
|
Function that when called like ``dispatcher(*args, **kwargs)`` with
|
|
arguments from the NumPy function call returns an iterable of
|
|
array-like arguments to check for ``__array_function__``.
|
|
module : str, optional
|
|
__module__ attribute to set on new function, e.g., ``module='numpy'``.
|
|
By default, module is copied from the decorated function.
|
|
verify : bool, optional
|
|
If True, verify the that the signature of the dispatcher and decorated
|
|
function signatures match exactly: all required and optional arguments
|
|
should appear in order with the same names, but the default values for
|
|
all optional arguments should be ``None``. Only disable verification
|
|
if the dispatcher's signature needs to deviate for some particular
|
|
reason, e.g., because the function has a signature like
|
|
``func(*args, **kwargs)``.
|
|
docs_from_dispatcher : bool, optional
|
|
If True, copy docs from the dispatcher function onto the dispatched
|
|
function, rather than from the implementation. This is useful for
|
|
functions defined in C, which otherwise don't have docstrings.
|
|
|
|
Returns
|
|
-------
|
|
Function suitable for decorating the implementation of a NumPy function.
|
|
"""
|
|
|
|
if not ARRAY_FUNCTION_ENABLED:
|
|
def decorator(implementation):
|
|
if docs_from_dispatcher:
|
|
add_docstring(implementation, dispatcher.__doc__)
|
|
if module is not None:
|
|
implementation.__module__ = module
|
|
return implementation
|
|
return decorator
|
|
|
|
def decorator(implementation):
|
|
if verify:
|
|
verify_matching_signatures(implementation, dispatcher)
|
|
|
|
if docs_from_dispatcher:
|
|
add_docstring(implementation, dispatcher.__doc__)
|
|
|
|
@functools.wraps(implementation)
|
|
def public_api(*args, **kwargs):
|
|
try:
|
|
relevant_args = dispatcher(*args, **kwargs)
|
|
except TypeError as exc:
|
|
# Try to clean up a signature related TypeError. Such an
|
|
# error will be something like:
|
|
# dispatcher.__name__() got an unexpected keyword argument
|
|
#
|
|
# So replace the dispatcher name in this case. In principle
|
|
# TypeErrors may be raised from _within_ the dispatcher, so
|
|
# we check that the traceback contains a string that starts
|
|
# with the name. (In principle we could also check the
|
|
# traceback length, as it would be deeper.)
|
|
msg = exc.args[0]
|
|
disp_name = dispatcher.__name__
|
|
if not isinstance(msg, str) or not msg.startswith(disp_name):
|
|
raise
|
|
|
|
# Replace with the correct name and re-raise:
|
|
new_msg = msg.replace(disp_name, public_api.__name__)
|
|
raise TypeError(new_msg) from None
|
|
|
|
return implement_array_function(
|
|
implementation, public_api, relevant_args, args, kwargs,
|
|
use_like)
|
|
|
|
public_api.__code__ = public_api.__code__.replace(
|
|
co_name=implementation.__name__,
|
|
co_filename='<__array_function__ internals>')
|
|
if module is not None:
|
|
public_api.__module__ = module
|
|
|
|
public_api._implementation = implementation
|
|
|
|
return public_api
|
|
|
|
return decorator
|
|
|
|
|
|
def array_function_from_dispatcher(
|
|
implementation, module=None, verify=True, docs_from_dispatcher=True):
|
|
"""Like array_function_dispatcher, but with function arguments flipped."""
|
|
|
|
def decorator(dispatcher):
|
|
return array_function_dispatch(
|
|
dispatcher, module, verify=verify,
|
|
docs_from_dispatcher=docs_from_dispatcher)(implementation)
|
|
return decorator
|