Inzynierka/Lib/site-packages/pandas/core/computation/align.py
2023-06-02 12:51:02 +02:00

214 lines
6.0 KiB
Python

"""
Core eval alignment algorithms.
"""
from __future__ import annotations
from functools import (
partial,
wraps,
)
from typing import (
TYPE_CHECKING,
Callable,
Sequence,
)
import warnings
import numpy as np
from pandas.errors import PerformanceWarning
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCSeries,
)
from pandas.core.base import PandasObject
import pandas.core.common as com
from pandas.core.computation.common import result_type_many
if TYPE_CHECKING:
from pandas._typing import F
from pandas.core.generic import NDFrame
from pandas.core.indexes.api import Index
def _align_core_single_unary_op(
term,
) -> tuple[partial | type[NDFrame], dict[str, Index] | None]:
typ: partial | type[NDFrame]
axes: dict[str, Index] | None = None
if isinstance(term.value, np.ndarray):
typ = partial(np.asanyarray, dtype=term.value.dtype)
else:
typ = type(term.value)
if hasattr(term.value, "axes"):
axes = _zip_axes_from_type(typ, term.value.axes)
return typ, axes
def _zip_axes_from_type(
typ: type[NDFrame], new_axes: Sequence[Index]
) -> dict[str, Index]:
return {name: new_axes[i] for i, name in enumerate(typ._AXIS_ORDERS)}
def _any_pandas_objects(terms) -> bool:
"""
Check a sequence of terms for instances of PandasObject.
"""
return any(isinstance(term.value, PandasObject) for term in terms)
def _filter_special_cases(f) -> Callable[[F], F]:
@wraps(f)
def wrapper(terms):
# single unary operand
if len(terms) == 1:
return _align_core_single_unary_op(terms[0])
term_values = (term.value for term in terms)
# we don't have any pandas objects
if not _any_pandas_objects(terms):
return result_type_many(*term_values), None
return f(terms)
return wrapper
@_filter_special_cases
def _align_core(terms):
term_index = [i for i, term in enumerate(terms) if hasattr(term.value, "axes")]
term_dims = [terms[i].value.ndim for i in term_index]
from pandas import Series
ndims = Series(dict(zip(term_index, term_dims)))
# initial axes are the axes of the largest-axis'd term
biggest = terms[ndims.idxmax()].value
typ = biggest._constructor
axes = biggest.axes
naxes = len(axes)
gt_than_one_axis = naxes > 1
for value in (terms[i].value for i in term_index):
is_series = isinstance(value, ABCSeries)
is_series_and_gt_one_axis = is_series and gt_than_one_axis
for axis, items in enumerate(value.axes):
if is_series_and_gt_one_axis:
ax, itm = naxes - 1, value.index
else:
ax, itm = axis, items
if not axes[ax].is_(itm):
axes[ax] = axes[ax].join(itm, how="outer")
for i, ndim in ndims.items():
for axis, items in zip(range(ndim), axes):
ti = terms[i].value
if hasattr(ti, "reindex"):
transpose = isinstance(ti, ABCSeries) and naxes > 1
reindexer = axes[naxes - 1] if transpose else items
term_axis_size = len(ti.axes[axis])
reindexer_size = len(reindexer)
ordm = np.log10(max(1, abs(reindexer_size - term_axis_size)))
if ordm >= 1 and reindexer_size >= 10000:
w = (
f"Alignment difference on axis {axis} is larger "
f"than an order of magnitude on term {repr(terms[i].name)}, "
f"by more than {ordm:.4g}; performance may suffer."
)
warnings.warn(
w, category=PerformanceWarning, stacklevel=find_stack_level()
)
f = partial(ti.reindex, reindexer, axis=axis, copy=False)
terms[i].update(f())
terms[i].update(terms[i].value.values)
return typ, _zip_axes_from_type(typ, axes)
def align_terms(terms):
"""
Align a set of terms.
"""
try:
# flatten the parse tree (a nested list, really)
terms = list(com.flatten(terms))
except TypeError:
# can't iterate so it must just be a constant or single variable
if isinstance(terms.value, (ABCSeries, ABCDataFrame)):
typ = type(terms.value)
return typ, _zip_axes_from_type(typ, terms.value.axes)
return np.result_type(terms.type), None
# if all resolved variables are numeric scalars
if all(term.is_scalar for term in terms):
return result_type_many(*(term.value for term in terms)).type, None
# perform the main alignment
typ, axes = _align_core(terms)
return typ, axes
def reconstruct_object(typ, obj, axes, dtype):
"""
Reconstruct an object given its type, raw value, and possibly empty
(None) axes.
Parameters
----------
typ : object
A type
obj : object
The value to use in the type constructor
axes : dict
The axes to use to construct the resulting pandas object
Returns
-------
ret : typ
An object of type ``typ`` with the value `obj` and possible axes
`axes`.
"""
try:
typ = typ.type
except AttributeError:
pass
res_t = np.result_type(obj.dtype, dtype)
if not isinstance(typ, partial) and issubclass(typ, PandasObject):
return typ(obj, dtype=res_t, **axes)
# special case for pathological things like ~True/~False
if hasattr(res_t, "type") and typ == np.bool_ and res_t != np.bool_:
ret_value = res_t.type(obj)
else:
ret_value = typ(obj).astype(res_t)
# The condition is to distinguish 0-dim array (returned in case of
# scalar) and 1 element array
# e.g. np.array(0) and np.array([0])
if (
len(obj.shape) == 1
and len(obj) == 1
and not isinstance(ret_value, np.ndarray)
):
ret_value = np.array([ret_value]).astype(res_t)
return ret_value