78 lines
2.2 KiB
Python
78 lines
2.2 KiB
Python
from __future__ import annotations
|
|
|
|
import numpy as np
|
|
|
|
from pandas.core.interchange.dataframe_protocol import (
|
|
Buffer,
|
|
DlpackDeviceType,
|
|
)
|
|
from pandas.util.version import Version
|
|
|
|
_NUMPY_HAS_DLPACK = Version(np.__version__) >= Version("1.22.0")
|
|
|
|
|
|
class PandasBuffer(Buffer):
|
|
"""
|
|
Data in the buffer is guaranteed to be contiguous in memory.
|
|
"""
|
|
|
|
def __init__(self, x: np.ndarray, allow_copy: bool = True) -> None:
|
|
"""
|
|
Handle only regular columns (= numpy arrays) for now.
|
|
"""
|
|
if not x.strides == (x.dtype.itemsize,):
|
|
# The protocol does not support strided buffers, so a copy is
|
|
# necessary. If that's not allowed, we need to raise an exception.
|
|
if allow_copy:
|
|
x = x.copy()
|
|
else:
|
|
raise RuntimeError(
|
|
"Exports cannot be zero-copy in the case "
|
|
"of a non-contiguous buffer"
|
|
)
|
|
|
|
# Store the numpy array in which the data resides as a private
|
|
# attribute, so we can use it to retrieve the public attributes
|
|
self._x = x
|
|
|
|
@property
|
|
def bufsize(self) -> int:
|
|
"""
|
|
Buffer size in bytes.
|
|
"""
|
|
return self._x.size * self._x.dtype.itemsize
|
|
|
|
@property
|
|
def ptr(self) -> int:
|
|
"""
|
|
Pointer to start of the buffer as an integer.
|
|
"""
|
|
return self._x.__array_interface__["data"][0]
|
|
|
|
def __dlpack__(self):
|
|
"""
|
|
Represent this structure as DLPack interface.
|
|
"""
|
|
if _NUMPY_HAS_DLPACK:
|
|
return self._x.__dlpack__()
|
|
raise NotImplementedError("__dlpack__")
|
|
|
|
def __dlpack_device__(self) -> tuple[DlpackDeviceType, int | None]:
|
|
"""
|
|
Device type and device ID for where the data in the buffer resides.
|
|
"""
|
|
return (DlpackDeviceType.CPU, None)
|
|
|
|
def __repr__(self) -> str:
|
|
return (
|
|
"PandasBuffer("
|
|
+ str(
|
|
{
|
|
"bufsize": self.bufsize,
|
|
"ptr": self.ptr,
|
|
"device": self.__dlpack_device__()[0].name,
|
|
}
|
|
)
|
|
+ ")"
|
|
)
|