652 lines
21 KiB
Python
652 lines
21 KiB
Python
"""
|
|
Quantilization functions and related stuff
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Literal,
|
|
)
|
|
|
|
import numpy as np
|
|
|
|
from pandas._libs import (
|
|
Timedelta,
|
|
Timestamp,
|
|
)
|
|
from pandas._libs.lib import infer_dtype
|
|
from pandas._typing import IntervalLeftRight
|
|
|
|
from pandas.core.dtypes.common import (
|
|
DT64NS_DTYPE,
|
|
ensure_platform_int,
|
|
is_bool_dtype,
|
|
is_categorical_dtype,
|
|
is_datetime64_dtype,
|
|
is_datetime64tz_dtype,
|
|
is_datetime_or_timedelta_dtype,
|
|
is_extension_array_dtype,
|
|
is_integer,
|
|
is_list_like,
|
|
is_numeric_dtype,
|
|
is_scalar,
|
|
is_timedelta64_dtype,
|
|
)
|
|
from pandas.core.dtypes.generic import ABCSeries
|
|
from pandas.core.dtypes.missing import isna
|
|
|
|
from pandas import (
|
|
Categorical,
|
|
Index,
|
|
IntervalIndex,
|
|
to_datetime,
|
|
to_timedelta,
|
|
)
|
|
from pandas.core import nanops
|
|
import pandas.core.algorithms as algos
|
|
|
|
|
|
def cut(
|
|
x,
|
|
bins,
|
|
right: bool = True,
|
|
labels=None,
|
|
retbins: bool = False,
|
|
precision: int = 3,
|
|
include_lowest: bool = False,
|
|
duplicates: str = "raise",
|
|
ordered: bool = True,
|
|
):
|
|
"""
|
|
Bin values into discrete intervals.
|
|
|
|
Use `cut` when you need to segment and sort data values into bins. This
|
|
function is also useful for going from a continuous variable to a
|
|
categorical variable. For example, `cut` could convert ages to groups of
|
|
age ranges. Supports binning into an equal number of bins, or a
|
|
pre-specified array of bins.
|
|
|
|
Parameters
|
|
----------
|
|
x : array-like
|
|
The input array to be binned. Must be 1-dimensional.
|
|
bins : int, sequence of scalars, or IntervalIndex
|
|
The criteria to bin by.
|
|
|
|
* int : Defines the number of equal-width bins in the range of `x`. The
|
|
range of `x` is extended by .1% on each side to include the minimum
|
|
and maximum values of `x`.
|
|
* sequence of scalars : Defines the bin edges allowing for non-uniform
|
|
width. No extension of the range of `x` is done.
|
|
* IntervalIndex : Defines the exact bins to be used. Note that
|
|
IntervalIndex for `bins` must be non-overlapping.
|
|
|
|
right : bool, default True
|
|
Indicates whether `bins` includes the rightmost edge or not. If
|
|
``right == True`` (the default), then the `bins` ``[1, 2, 3, 4]``
|
|
indicate (1,2], (2,3], (3,4]. This argument is ignored when
|
|
`bins` is an IntervalIndex.
|
|
labels : array or False, default None
|
|
Specifies the labels for the returned bins. Must be the same length as
|
|
the resulting bins. If False, returns only integer indicators of the
|
|
bins. This affects the type of the output container (see below).
|
|
This argument is ignored when `bins` is an IntervalIndex. If True,
|
|
raises an error. When `ordered=False`, labels must be provided.
|
|
retbins : bool, default False
|
|
Whether to return the bins or not. Useful when bins is provided
|
|
as a scalar.
|
|
precision : int, default 3
|
|
The precision at which to store and display the bins labels.
|
|
include_lowest : bool, default False
|
|
Whether the first interval should be left-inclusive or not.
|
|
duplicates : {default 'raise', 'drop'}, optional
|
|
If bin edges are not unique, raise ValueError or drop non-uniques.
|
|
ordered : bool, default True
|
|
Whether the labels are ordered or not. Applies to returned types
|
|
Categorical and Series (with Categorical dtype). If True,
|
|
the resulting categorical will be ordered. If False, the resulting
|
|
categorical will be unordered (labels must be provided).
|
|
|
|
.. versionadded:: 1.1.0
|
|
|
|
Returns
|
|
-------
|
|
out : Categorical, Series, or ndarray
|
|
An array-like object representing the respective bin for each value
|
|
of `x`. The type depends on the value of `labels`.
|
|
|
|
* None (default) : returns a Series for Series `x` or a
|
|
Categorical for all other inputs. The values stored within
|
|
are Interval dtype.
|
|
|
|
* sequence of scalars : returns a Series for Series `x` or a
|
|
Categorical for all other inputs. The values stored within
|
|
are whatever the type in the sequence is.
|
|
|
|
* False : returns an ndarray of integers.
|
|
|
|
bins : numpy.ndarray or IntervalIndex.
|
|
The computed or specified bins. Only returned when `retbins=True`.
|
|
For scalar or sequence `bins`, this is an ndarray with the computed
|
|
bins. If set `duplicates=drop`, `bins` will drop non-unique bin. For
|
|
an IntervalIndex `bins`, this is equal to `bins`.
|
|
|
|
See Also
|
|
--------
|
|
qcut : Discretize variable into equal-sized buckets based on rank
|
|
or based on sample quantiles.
|
|
Categorical : Array type for storing data that come from a
|
|
fixed set of values.
|
|
Series : One-dimensional array with axis labels (including time series).
|
|
IntervalIndex : Immutable Index implementing an ordered, sliceable set.
|
|
|
|
Notes
|
|
-----
|
|
Any NA values will be NA in the result. Out of bounds values will be NA in
|
|
the resulting Series or Categorical object.
|
|
|
|
Reference :ref:`the user guide <reshaping.tile.cut>` for more examples.
|
|
|
|
Examples
|
|
--------
|
|
Discretize into three equal-sized bins.
|
|
|
|
>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3)
|
|
... # doctest: +ELLIPSIS
|
|
[(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...
|
|
Categories (3, interval[float64, right]): [(0.994, 3.0] < (3.0, 5.0] ...
|
|
|
|
>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, retbins=True)
|
|
... # doctest: +ELLIPSIS
|
|
([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...
|
|
Categories (3, interval[float64, right]): [(0.994, 3.0] < (3.0, 5.0] ...
|
|
array([0.994, 3. , 5. , 7. ]))
|
|
|
|
Discovers the same bins, but assign them specific labels. Notice that
|
|
the returned Categorical's categories are `labels` and is ordered.
|
|
|
|
>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]),
|
|
... 3, labels=["bad", "medium", "good"])
|
|
['bad', 'good', 'medium', 'medium', 'good', 'bad']
|
|
Categories (3, object): ['bad' < 'medium' < 'good']
|
|
|
|
``ordered=False`` will result in unordered categories when labels are passed.
|
|
This parameter can be used to allow non-unique labels:
|
|
|
|
>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3,
|
|
... labels=["B", "A", "B"], ordered=False)
|
|
['B', 'B', 'A', 'A', 'B', 'B']
|
|
Categories (2, object): ['A', 'B']
|
|
|
|
``labels=False`` implies you just want the bins back.
|
|
|
|
>>> pd.cut([0, 1, 1, 2], bins=4, labels=False)
|
|
array([0, 1, 1, 3])
|
|
|
|
Passing a Series as an input returns a Series with categorical dtype:
|
|
|
|
>>> s = pd.Series(np.array([2, 4, 6, 8, 10]),
|
|
... index=['a', 'b', 'c', 'd', 'e'])
|
|
>>> pd.cut(s, 3)
|
|
... # doctest: +ELLIPSIS
|
|
a (1.992, 4.667]
|
|
b (1.992, 4.667]
|
|
c (4.667, 7.333]
|
|
d (7.333, 10.0]
|
|
e (7.333, 10.0]
|
|
dtype: category
|
|
Categories (3, interval[float64, right]): [(1.992, 4.667] < (4.667, ...
|
|
|
|
Passing a Series as an input returns a Series with mapping value.
|
|
It is used to map numerically to intervals based on bins.
|
|
|
|
>>> s = pd.Series(np.array([2, 4, 6, 8, 10]),
|
|
... index=['a', 'b', 'c', 'd', 'e'])
|
|
>>> pd.cut(s, [0, 2, 4, 6, 8, 10], labels=False, retbins=True, right=False)
|
|
... # doctest: +ELLIPSIS
|
|
(a 1.0
|
|
b 2.0
|
|
c 3.0
|
|
d 4.0
|
|
e NaN
|
|
dtype: float64,
|
|
array([ 0, 2, 4, 6, 8, 10]))
|
|
|
|
Use `drop` optional when bins is not unique
|
|
|
|
>>> pd.cut(s, [0, 2, 4, 6, 10, 10], labels=False, retbins=True,
|
|
... right=False, duplicates='drop')
|
|
... # doctest: +ELLIPSIS
|
|
(a 1.0
|
|
b 2.0
|
|
c 3.0
|
|
d 3.0
|
|
e NaN
|
|
dtype: float64,
|
|
array([ 0, 2, 4, 6, 10]))
|
|
|
|
Passing an IntervalIndex for `bins` results in those categories exactly.
|
|
Notice that values not covered by the IntervalIndex are set to NaN. 0
|
|
is to the left of the first bin (which is closed on the right), and 1.5
|
|
falls between two bins.
|
|
|
|
>>> bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)])
|
|
>>> pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins)
|
|
[NaN, (0.0, 1.0], NaN, (2.0, 3.0], (4.0, 5.0]]
|
|
Categories (3, interval[int64, right]): [(0, 1] < (2, 3] < (4, 5]]
|
|
"""
|
|
# NOTE: this binning code is changed a bit from histogram for var(x) == 0
|
|
|
|
original = x
|
|
x = _preprocess_for_cut(x)
|
|
x, dtype = _coerce_to_type(x)
|
|
|
|
if not np.iterable(bins):
|
|
if is_scalar(bins) and bins < 1:
|
|
raise ValueError("`bins` should be a positive integer.")
|
|
|
|
try: # for array-like
|
|
sz = x.size
|
|
except AttributeError:
|
|
x = np.asarray(x)
|
|
sz = x.size
|
|
|
|
if sz == 0:
|
|
raise ValueError("Cannot cut empty array")
|
|
|
|
rng = (nanops.nanmin(x), nanops.nanmax(x))
|
|
mn, mx = (mi + 0.0 for mi in rng)
|
|
|
|
if np.isinf(mn) or np.isinf(mx):
|
|
# GH 24314
|
|
raise ValueError(
|
|
"cannot specify integer `bins` when input data contains infinity"
|
|
)
|
|
if mn == mx: # adjust end points before binning
|
|
mn -= 0.001 * abs(mn) if mn != 0 else 0.001
|
|
mx += 0.001 * abs(mx) if mx != 0 else 0.001
|
|
bins = np.linspace(mn, mx, bins + 1, endpoint=True)
|
|
else: # adjust end points after binning
|
|
bins = np.linspace(mn, mx, bins + 1, endpoint=True)
|
|
adj = (mx - mn) * 0.001 # 0.1% of the range
|
|
if right:
|
|
bins[0] -= adj
|
|
else:
|
|
bins[-1] += adj
|
|
|
|
elif isinstance(bins, IntervalIndex):
|
|
if bins.is_overlapping:
|
|
raise ValueError("Overlapping IntervalIndex is not accepted.")
|
|
|
|
else:
|
|
if is_datetime64tz_dtype(bins):
|
|
bins = np.asarray(bins, dtype=DT64NS_DTYPE)
|
|
else:
|
|
bins = np.asarray(bins)
|
|
bins = _convert_bin_to_numeric_type(bins, dtype)
|
|
|
|
# GH 26045: cast to float64 to avoid an overflow
|
|
if (np.diff(bins.astype("float64")) < 0).any():
|
|
raise ValueError("bins must increase monotonically.")
|
|
|
|
fac, bins = _bins_to_cuts(
|
|
x,
|
|
bins,
|
|
right=right,
|
|
labels=labels,
|
|
precision=precision,
|
|
include_lowest=include_lowest,
|
|
dtype=dtype,
|
|
duplicates=duplicates,
|
|
ordered=ordered,
|
|
)
|
|
|
|
return _postprocess_for_cut(fac, bins, retbins, dtype, original)
|
|
|
|
|
|
def qcut(
|
|
x,
|
|
q,
|
|
labels=None,
|
|
retbins: bool = False,
|
|
precision: int = 3,
|
|
duplicates: str = "raise",
|
|
):
|
|
"""
|
|
Quantile-based discretization function.
|
|
|
|
Discretize variable into equal-sized buckets based on rank or based
|
|
on sample quantiles. For example 1000 values for 10 quantiles would
|
|
produce a Categorical object indicating quantile membership for each data point.
|
|
|
|
Parameters
|
|
----------
|
|
x : 1d ndarray or Series
|
|
q : int or list-like of float
|
|
Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately
|
|
array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles.
|
|
labels : array or False, default None
|
|
Used as labels for the resulting bins. Must be of the same length as
|
|
the resulting bins. If False, return only integer indicators of the
|
|
bins. If True, raises an error.
|
|
retbins : bool, optional
|
|
Whether to return the (bins, labels) or not. Can be useful if bins
|
|
is given as a scalar.
|
|
precision : int, optional
|
|
The precision at which to store and display the bins labels.
|
|
duplicates : {default 'raise', 'drop'}, optional
|
|
If bin edges are not unique, raise ValueError or drop non-uniques.
|
|
|
|
Returns
|
|
-------
|
|
out : Categorical or Series or array of integers if labels is False
|
|
The return type (Categorical or Series) depends on the input: a Series
|
|
of type category if input is a Series else Categorical. Bins are
|
|
represented as categories when categorical data is returned.
|
|
bins : ndarray of floats
|
|
Returned only if `retbins` is True.
|
|
|
|
Notes
|
|
-----
|
|
Out of bounds values will be NA in the resulting Categorical object
|
|
|
|
Examples
|
|
--------
|
|
>>> pd.qcut(range(5), 4)
|
|
... # doctest: +ELLIPSIS
|
|
[(-0.001, 1.0], (-0.001, 1.0], (1.0, 2.0], (2.0, 3.0], (3.0, 4.0]]
|
|
Categories (4, interval[float64, right]): [(-0.001, 1.0] < (1.0, 2.0] ...
|
|
|
|
>>> pd.qcut(range(5), 3, labels=["good", "medium", "bad"])
|
|
... # doctest: +SKIP
|
|
[good, good, medium, bad, bad]
|
|
Categories (3, object): [good < medium < bad]
|
|
|
|
>>> pd.qcut(range(5), 4, labels=False)
|
|
array([0, 0, 1, 2, 3])
|
|
"""
|
|
original = x
|
|
x = _preprocess_for_cut(x)
|
|
x, dtype = _coerce_to_type(x)
|
|
|
|
quantiles = np.linspace(0, 1, q + 1) if is_integer(q) else q
|
|
|
|
x_np = np.asarray(x)
|
|
x_np = x_np[~np.isnan(x_np)]
|
|
bins = np.quantile(x_np, quantiles)
|
|
|
|
fac, bins = _bins_to_cuts(
|
|
x,
|
|
bins,
|
|
labels=labels,
|
|
precision=precision,
|
|
include_lowest=True,
|
|
dtype=dtype,
|
|
duplicates=duplicates,
|
|
)
|
|
|
|
return _postprocess_for_cut(fac, bins, retbins, dtype, original)
|
|
|
|
|
|
def _bins_to_cuts(
|
|
x,
|
|
bins: np.ndarray,
|
|
right: bool = True,
|
|
labels=None,
|
|
precision: int = 3,
|
|
include_lowest: bool = False,
|
|
dtype=None,
|
|
duplicates: str = "raise",
|
|
ordered: bool = True,
|
|
):
|
|
if not ordered and labels is None:
|
|
raise ValueError("'labels' must be provided if 'ordered = False'")
|
|
|
|
if duplicates not in ["raise", "drop"]:
|
|
raise ValueError(
|
|
"invalid value for 'duplicates' parameter, valid options are: raise, drop"
|
|
)
|
|
|
|
if isinstance(bins, IntervalIndex):
|
|
# we have a fast-path here
|
|
ids = bins.get_indexer(x)
|
|
result = Categorical.from_codes(ids, categories=bins, ordered=True)
|
|
return result, bins
|
|
|
|
unique_bins = algos.unique(bins)
|
|
if len(unique_bins) < len(bins) and len(bins) != 2:
|
|
if duplicates == "raise":
|
|
raise ValueError(
|
|
f"Bin edges must be unique: {repr(bins)}.\n"
|
|
f"You can drop duplicate edges by setting the 'duplicates' kwarg"
|
|
)
|
|
bins = unique_bins
|
|
|
|
side: Literal["left", "right"] = "left" if right else "right"
|
|
ids = ensure_platform_int(bins.searchsorted(x, side=side))
|
|
|
|
if include_lowest:
|
|
ids[np.asarray(x) == bins[0]] = 1
|
|
|
|
na_mask = isna(x) | (ids == len(bins)) | (ids == 0)
|
|
has_nas = na_mask.any()
|
|
|
|
if labels is not False:
|
|
if not (labels is None or is_list_like(labels)):
|
|
raise ValueError(
|
|
"Bin labels must either be False, None or passed in as a "
|
|
"list-like argument"
|
|
)
|
|
|
|
if labels is None:
|
|
labels = _format_labels(
|
|
bins, precision, right=right, include_lowest=include_lowest, dtype=dtype
|
|
)
|
|
elif ordered and len(set(labels)) != len(labels):
|
|
raise ValueError(
|
|
"labels must be unique if ordered=True; pass ordered=False "
|
|
"for duplicate labels"
|
|
)
|
|
else:
|
|
if len(labels) != len(bins) - 1:
|
|
raise ValueError(
|
|
"Bin labels must be one fewer than the number of bin edges"
|
|
)
|
|
if not is_categorical_dtype(labels):
|
|
labels = Categorical(
|
|
labels,
|
|
categories=labels if len(set(labels)) == len(labels) else None,
|
|
ordered=ordered,
|
|
)
|
|
# TODO: handle mismatch between categorical label order and pandas.cut order.
|
|
np.putmask(ids, na_mask, 0)
|
|
result = algos.take_nd(labels, ids - 1)
|
|
|
|
else:
|
|
result = ids - 1
|
|
if has_nas:
|
|
result = result.astype(np.float64)
|
|
np.putmask(result, na_mask, np.nan)
|
|
|
|
return result, bins
|
|
|
|
|
|
def _coerce_to_type(x):
|
|
"""
|
|
if the passed data is of datetime/timedelta, bool or nullable int type,
|
|
this method converts it to numeric so that cut or qcut method can
|
|
handle it
|
|
"""
|
|
dtype = None
|
|
|
|
if is_datetime64tz_dtype(x.dtype):
|
|
dtype = x.dtype
|
|
elif is_datetime64_dtype(x.dtype):
|
|
x = to_datetime(x).astype("datetime64[ns]", copy=False)
|
|
dtype = np.dtype("datetime64[ns]")
|
|
elif is_timedelta64_dtype(x.dtype):
|
|
x = to_timedelta(x)
|
|
dtype = np.dtype("timedelta64[ns]")
|
|
elif is_bool_dtype(x.dtype):
|
|
# GH 20303
|
|
x = x.astype(np.int64)
|
|
# To support cut and qcut for IntegerArray we convert to float dtype.
|
|
# Will properly support in the future.
|
|
# https://github.com/pandas-dev/pandas/pull/31290
|
|
# https://github.com/pandas-dev/pandas/issues/31389
|
|
elif is_extension_array_dtype(x.dtype) and is_numeric_dtype(x.dtype):
|
|
x = x.to_numpy(dtype=np.float64, na_value=np.nan)
|
|
|
|
if dtype is not None:
|
|
# GH 19768: force NaT to NaN during integer conversion
|
|
x = np.where(x.notna(), x.view(np.int64), np.nan)
|
|
|
|
return x, dtype
|
|
|
|
|
|
def _convert_bin_to_numeric_type(bins, dtype):
|
|
"""
|
|
if the passed bin is of datetime/timedelta type,
|
|
this method converts it to integer
|
|
|
|
Parameters
|
|
----------
|
|
bins : list-like of bins
|
|
dtype : dtype of data
|
|
|
|
Raises
|
|
------
|
|
ValueError if bins are not of a compat dtype to dtype
|
|
"""
|
|
bins_dtype = infer_dtype(bins, skipna=False)
|
|
if is_timedelta64_dtype(dtype):
|
|
if bins_dtype in ["timedelta", "timedelta64"]:
|
|
bins = to_timedelta(bins).view(np.int64)
|
|
else:
|
|
raise ValueError("bins must be of timedelta64 dtype")
|
|
elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype):
|
|
if bins_dtype in ["datetime", "datetime64"]:
|
|
bins = to_datetime(bins)
|
|
if is_datetime64_dtype(bins):
|
|
# As of 2.0, to_datetime may give non-nano, so we need to convert
|
|
# here until the rest of this file recognizes non-nano
|
|
bins = bins.astype("datetime64[ns]", copy=False)
|
|
bins = bins.view(np.int64)
|
|
else:
|
|
raise ValueError("bins must be of datetime64 dtype")
|
|
|
|
return bins
|
|
|
|
|
|
def _convert_bin_to_datelike_type(bins, dtype):
|
|
"""
|
|
Convert bins to a DatetimeIndex or TimedeltaIndex if the original dtype is
|
|
datelike
|
|
|
|
Parameters
|
|
----------
|
|
bins : list-like of bins
|
|
dtype : dtype of data
|
|
|
|
Returns
|
|
-------
|
|
bins : Array-like of bins, DatetimeIndex or TimedeltaIndex if dtype is
|
|
datelike
|
|
"""
|
|
if is_datetime64tz_dtype(dtype):
|
|
bins = to_datetime(bins.astype(np.int64), utc=True).tz_convert(dtype.tz)
|
|
elif is_datetime_or_timedelta_dtype(dtype):
|
|
bins = Index(bins.astype(np.int64), dtype=dtype)
|
|
return bins
|
|
|
|
|
|
def _format_labels(
|
|
bins, precision: int, right: bool = True, include_lowest: bool = False, dtype=None
|
|
):
|
|
"""based on the dtype, return our labels"""
|
|
closed: IntervalLeftRight = "right" if right else "left"
|
|
|
|
formatter: Callable[[Any], Timestamp] | Callable[[Any], Timedelta]
|
|
|
|
if is_datetime64tz_dtype(dtype):
|
|
formatter = lambda x: Timestamp(x, tz=dtype.tz)
|
|
adjust = lambda x: x - Timedelta("1ns")
|
|
elif is_datetime64_dtype(dtype):
|
|
formatter = Timestamp
|
|
adjust = lambda x: x - Timedelta("1ns")
|
|
elif is_timedelta64_dtype(dtype):
|
|
formatter = Timedelta
|
|
adjust = lambda x: x - Timedelta("1ns")
|
|
else:
|
|
precision = _infer_precision(precision, bins)
|
|
formatter = lambda x: _round_frac(x, precision)
|
|
adjust = lambda x: x - 10 ** (-precision)
|
|
|
|
breaks = [formatter(b) for b in bins]
|
|
if right and include_lowest:
|
|
# adjust lhs of first interval by precision to account for being right closed
|
|
breaks[0] = adjust(breaks[0])
|
|
|
|
return IntervalIndex.from_breaks(breaks, closed=closed)
|
|
|
|
|
|
def _preprocess_for_cut(x):
|
|
"""
|
|
handles preprocessing for cut where we convert passed
|
|
input to array, strip the index information and store it
|
|
separately
|
|
"""
|
|
# Check that the passed array is a Pandas or Numpy object
|
|
# We don't want to strip away a Pandas data-type here (e.g. datetimetz)
|
|
ndim = getattr(x, "ndim", None)
|
|
if ndim is None:
|
|
x = np.asarray(x)
|
|
if x.ndim != 1:
|
|
raise ValueError("Input array must be 1 dimensional")
|
|
|
|
return x
|
|
|
|
|
|
def _postprocess_for_cut(fac, bins, retbins: bool, dtype, original):
|
|
"""
|
|
handles post processing for the cut method where
|
|
we combine the index information if the originally passed
|
|
datatype was a series
|
|
"""
|
|
if isinstance(original, ABCSeries):
|
|
fac = original._constructor(fac, index=original.index, name=original.name)
|
|
|
|
if not retbins:
|
|
return fac
|
|
|
|
bins = _convert_bin_to_datelike_type(bins, dtype)
|
|
|
|
return fac, bins
|
|
|
|
|
|
def _round_frac(x, precision: int):
|
|
"""
|
|
Round the fractional part of the given number
|
|
"""
|
|
if not np.isfinite(x) or x == 0:
|
|
return x
|
|
else:
|
|
frac, whole = np.modf(x)
|
|
if whole == 0:
|
|
digits = -int(np.floor(np.log10(abs(frac)))) - 1 + precision
|
|
else:
|
|
digits = precision
|
|
return np.around(x, digits)
|
|
|
|
|
|
def _infer_precision(base_precision: int, bins) -> int:
|
|
"""
|
|
Infer an appropriate precision for _round_frac
|
|
"""
|
|
for precision in range(base_precision, 20):
|
|
levels = [_round_frac(b, precision) for b in bins]
|
|
if algos.unique(levels).size == bins.size:
|
|
return precision
|
|
return base_precision # default
|