Inzynierka/Lib/site-packages/pandas/core/util/hashing.py
2023-06-02 12:51:02 +02:00

367 lines
10 KiB
Python

"""
data hash pandas / numpy objects
"""
from __future__ import annotations
import itertools
from typing import (
TYPE_CHECKING,
Hashable,
Iterable,
Iterator,
cast,
)
import numpy as np
from pandas._libs import lib
from pandas._libs.hashing import hash_object_array
from pandas._typing import (
ArrayLike,
npt,
)
from pandas.core.dtypes.common import (
is_categorical_dtype,
is_list_like,
)
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCExtensionArray,
ABCIndex,
ABCMultiIndex,
ABCSeries,
)
if TYPE_CHECKING:
from pandas import (
Categorical,
DataFrame,
Index,
MultiIndex,
Series,
)
# 16 byte long hashing key
_default_hash_key = "0123456789123456"
def combine_hash_arrays(
arrays: Iterator[np.ndarray], num_items: int
) -> npt.NDArray[np.uint64]:
"""
Parameters
----------
arrays : Iterator[np.ndarray]
num_items : int
Returns
-------
np.ndarray[uint64]
Should be the same as CPython's tupleobject.c
"""
try:
first = next(arrays)
except StopIteration:
return np.array([], dtype=np.uint64)
arrays = itertools.chain([first], arrays)
mult = np.uint64(1000003)
out = np.zeros_like(first) + np.uint64(0x345678)
last_i = 0
for i, a in enumerate(arrays):
inverse_i = num_items - i
out ^= a
out *= mult
mult += np.uint64(82520 + inverse_i + inverse_i)
last_i = i
assert last_i + 1 == num_items, "Fed in wrong num_items"
out += np.uint64(97531)
return out
def hash_pandas_object(
obj: Index | DataFrame | Series,
index: bool = True,
encoding: str = "utf8",
hash_key: str | None = _default_hash_key,
categorize: bool = True,
) -> Series:
"""
Return a data hash of the Index/Series/DataFrame.
Parameters
----------
obj : Index, Series, or DataFrame
index : bool, default True
Include the index in the hash (if Series/DataFrame).
encoding : str, default 'utf8'
Encoding for data & key when strings.
hash_key : str, default _default_hash_key
Hash_key for string key to encode.
categorize : bool, default True
Whether to first categorize object arrays before hashing. This is more
efficient when the array contains duplicate values.
Returns
-------
Series of uint64, same length as the object
"""
from pandas import Series
if hash_key is None:
hash_key = _default_hash_key
if isinstance(obj, ABCMultiIndex):
return Series(hash_tuples(obj, encoding, hash_key), dtype="uint64", copy=False)
elif isinstance(obj, ABCIndex):
h = hash_array(obj._values, encoding, hash_key, categorize).astype(
"uint64", copy=False
)
ser = Series(h, index=obj, dtype="uint64", copy=False)
elif isinstance(obj, ABCSeries):
h = hash_array(obj._values, encoding, hash_key, categorize).astype(
"uint64", copy=False
)
if index:
index_iter = (
hash_pandas_object(
obj.index,
index=False,
encoding=encoding,
hash_key=hash_key,
categorize=categorize,
)._values
for _ in [None]
)
arrays = itertools.chain([h], index_iter)
h = combine_hash_arrays(arrays, 2)
ser = Series(h, index=obj.index, dtype="uint64", copy=False)
elif isinstance(obj, ABCDataFrame):
hashes = (
hash_array(series._values, encoding, hash_key, categorize)
for _, series in obj.items()
)
num_items = len(obj.columns)
if index:
index_hash_generator = (
hash_pandas_object(
obj.index,
index=False,
encoding=encoding,
hash_key=hash_key,
categorize=categorize,
)._values
for _ in [None]
)
num_items += 1
# keep `hashes` specifically a generator to keep mypy happy
_hashes = itertools.chain(hashes, index_hash_generator)
hashes = (x for x in _hashes)
h = combine_hash_arrays(hashes, num_items)
ser = Series(h, index=obj.index, dtype="uint64", copy=False)
else:
raise TypeError(f"Unexpected type for hashing {type(obj)}")
return ser
def hash_tuples(
vals: MultiIndex | Iterable[tuple[Hashable, ...]],
encoding: str = "utf8",
hash_key: str = _default_hash_key,
) -> npt.NDArray[np.uint64]:
"""
Hash an MultiIndex / listlike-of-tuples efficiently.
Parameters
----------
vals : MultiIndex or listlike-of-tuples
encoding : str, default 'utf8'
hash_key : str, default _default_hash_key
Returns
-------
ndarray[np.uint64] of hashed values
"""
if not is_list_like(vals):
raise TypeError("must be convertible to a list-of-tuples")
from pandas import (
Categorical,
MultiIndex,
)
if not isinstance(vals, ABCMultiIndex):
mi = MultiIndex.from_tuples(vals)
else:
mi = vals
# create a list-of-Categoricals
cat_vals = [
Categorical(mi.codes[level], mi.levels[level], ordered=False, fastpath=True)
for level in range(mi.nlevels)
]
# hash the list-of-ndarrays
hashes = (
_hash_categorical(cat, encoding=encoding, hash_key=hash_key) for cat in cat_vals
)
h = combine_hash_arrays(hashes, len(cat_vals))
return h
def _hash_categorical(
cat: Categorical, encoding: str, hash_key: str
) -> npt.NDArray[np.uint64]:
"""
Hash a Categorical by hashing its categories, and then mapping the codes
to the hashes
Parameters
----------
cat : Categorical
encoding : str
hash_key : str
Returns
-------
ndarray[np.uint64] of hashed values, same size as len(c)
"""
# Convert ExtensionArrays to ndarrays
values = np.asarray(cat.categories._values)
hashed = hash_array(values, encoding, hash_key, categorize=False)
# we have uint64, as we don't directly support missing values
# we don't want to use take_nd which will coerce to float
# instead, directly construct the result with a
# max(np.uint64) as the missing value indicator
#
# TODO: GH 15362
mask = cat.isna()
if len(hashed):
result = hashed.take(cat.codes)
else:
result = np.zeros(len(mask), dtype="uint64")
if mask.any():
result[mask] = lib.u8max
return result
def hash_array(
vals: ArrayLike,
encoding: str = "utf8",
hash_key: str = _default_hash_key,
categorize: bool = True,
) -> npt.NDArray[np.uint64]:
"""
Given a 1d array, return an array of deterministic integers.
Parameters
----------
vals : ndarray or ExtensionArray
encoding : str, default 'utf8'
Encoding for data & key when strings.
hash_key : str, default _default_hash_key
Hash_key for string key to encode.
categorize : bool, default True
Whether to first categorize object arrays before hashing. This is more
efficient when the array contains duplicate values.
Returns
-------
ndarray[np.uint64, ndim=1]
Hashed values, same length as the vals.
"""
if not hasattr(vals, "dtype"):
raise TypeError("must pass a ndarray-like")
dtype = vals.dtype
# For categoricals, we hash the categories, then remap the codes to the
# hash values. (This check is above the complex check so that we don't ask
# numpy if categorical is a subdtype of complex, as it will choke).
if is_categorical_dtype(dtype):
vals = cast("Categorical", vals)
return _hash_categorical(vals, encoding, hash_key)
elif isinstance(vals, ABCExtensionArray):
vals, _ = vals._values_for_factorize()
elif not isinstance(vals, np.ndarray):
# GH#42003
raise TypeError(
"hash_array requires np.ndarray or ExtensionArray, not "
f"{type(vals).__name__}. Use hash_pandas_object instead."
)
return _hash_ndarray(vals, encoding, hash_key, categorize)
def _hash_ndarray(
vals: np.ndarray,
encoding: str = "utf8",
hash_key: str = _default_hash_key,
categorize: bool = True,
) -> npt.NDArray[np.uint64]:
"""
See hash_array.__doc__.
"""
dtype = vals.dtype
# we'll be working with everything as 64-bit values, so handle this
# 128-bit value early
if np.issubdtype(dtype, np.complex128):
return hash_array(np.real(vals)) + 23 * hash_array(np.imag(vals))
# First, turn whatever array this is into unsigned 64-bit ints, if we can
# manage it.
elif dtype == bool:
vals = vals.astype("u8")
elif issubclass(dtype.type, (np.datetime64, np.timedelta64)):
vals = vals.view("i8").astype("u8", copy=False)
elif issubclass(dtype.type, np.number) and dtype.itemsize <= 8:
vals = vals.view(f"u{vals.dtype.itemsize}").astype("u8")
else:
# With repeated values, its MUCH faster to categorize object dtypes,
# then hash and rename categories. We allow skipping the categorization
# when the values are known/likely to be unique.
if categorize:
from pandas import (
Categorical,
Index,
factorize,
)
codes, categories = factorize(vals, sort=False)
cat = Categorical(codes, Index(categories), ordered=False, fastpath=True)
return _hash_categorical(cat, encoding, hash_key)
try:
vals = hash_object_array(vals, hash_key, encoding)
except TypeError:
# we have mixed types
vals = hash_object_array(
vals.astype(str).astype(object), hash_key, encoding
)
# Then, redistribute these 64-bit ints within the space of 64-bit ints
vals ^= vals >> 30
vals *= np.uint64(0xBF58476D1CE4E5B9)
vals ^= vals >> 27
vals *= np.uint64(0x94D049BB133111EB)
vals ^= vals >> 31
return vals