169 lines
6.6 KiB
Python
169 lines
6.6 KiB
Python
"""Common utility functions for rolling operations"""
|
|
from __future__ import annotations
|
|
|
|
from collections import defaultdict
|
|
from typing import cast
|
|
|
|
import numpy as np
|
|
|
|
from pandas.core.dtypes.generic import (
|
|
ABCDataFrame,
|
|
ABCSeries,
|
|
)
|
|
|
|
from pandas.core.indexes.api import MultiIndex
|
|
|
|
|
|
def flex_binary_moment(arg1, arg2, f, pairwise: bool = False):
|
|
if isinstance(arg1, ABCSeries) and isinstance(arg2, ABCSeries):
|
|
X, Y = prep_binary(arg1, arg2)
|
|
return f(X, Y)
|
|
|
|
elif isinstance(arg1, ABCDataFrame):
|
|
from pandas import DataFrame
|
|
|
|
def dataframe_from_int_dict(data, frame_template) -> DataFrame:
|
|
result = DataFrame(data, index=frame_template.index)
|
|
if len(result.columns) > 0:
|
|
result.columns = frame_template.columns[result.columns]
|
|
else:
|
|
result.columns = frame_template.columns.copy()
|
|
return result
|
|
|
|
results = {}
|
|
if isinstance(arg2, ABCDataFrame):
|
|
if pairwise is False:
|
|
if arg1 is arg2:
|
|
# special case in order to handle duplicate column names
|
|
for i in range(len(arg1.columns)):
|
|
results[i] = f(arg1.iloc[:, i], arg2.iloc[:, i])
|
|
return dataframe_from_int_dict(results, arg1)
|
|
else:
|
|
if not arg1.columns.is_unique:
|
|
raise ValueError("'arg1' columns are not unique")
|
|
if not arg2.columns.is_unique:
|
|
raise ValueError("'arg2' columns are not unique")
|
|
X, Y = arg1.align(arg2, join="outer")
|
|
X, Y = prep_binary(X, Y)
|
|
res_columns = arg1.columns.union(arg2.columns)
|
|
for col in res_columns:
|
|
if col in X and col in Y:
|
|
results[col] = f(X[col], Y[col])
|
|
return DataFrame(results, index=X.index, columns=res_columns)
|
|
elif pairwise is True:
|
|
results = defaultdict(dict)
|
|
for i in range(len(arg1.columns)):
|
|
for j in range(len(arg2.columns)):
|
|
if j < i and arg2 is arg1:
|
|
# Symmetric case
|
|
results[i][j] = results[j][i]
|
|
else:
|
|
results[i][j] = f(
|
|
*prep_binary(arg1.iloc[:, i], arg2.iloc[:, j])
|
|
)
|
|
|
|
from pandas import concat
|
|
|
|
result_index = arg1.index.union(arg2.index)
|
|
if len(result_index):
|
|
# construct result frame
|
|
result = concat(
|
|
[
|
|
concat(
|
|
[results[i][j] for j in range(len(arg2.columns))],
|
|
ignore_index=True,
|
|
)
|
|
for i in range(len(arg1.columns))
|
|
],
|
|
ignore_index=True,
|
|
axis=1,
|
|
)
|
|
result.columns = arg1.columns
|
|
|
|
# set the index and reorder
|
|
if arg2.columns.nlevels > 1:
|
|
# mypy needs to know columns is a MultiIndex, Index doesn't
|
|
# have levels attribute
|
|
arg2.columns = cast(MultiIndex, arg2.columns)
|
|
# GH 21157: Equivalent to MultiIndex.from_product(
|
|
# [result_index], <unique combinations of arg2.columns.levels>,
|
|
# )
|
|
# A normal MultiIndex.from_product will produce too many
|
|
# combinations.
|
|
result_level = np.tile(
|
|
result_index, len(result) // len(result_index)
|
|
)
|
|
arg2_levels = (
|
|
np.repeat(
|
|
arg2.columns.get_level_values(i),
|
|
len(result) // len(arg2.columns),
|
|
)
|
|
for i in range(arg2.columns.nlevels)
|
|
)
|
|
result_names = list(arg2.columns.names) + [result_index.name]
|
|
result.index = MultiIndex.from_arrays(
|
|
[*arg2_levels, result_level], names=result_names
|
|
)
|
|
# GH 34440
|
|
num_levels = len(result.index.levels)
|
|
new_order = [num_levels - 1] + list(range(num_levels - 1))
|
|
result = result.reorder_levels(new_order).sort_index()
|
|
else:
|
|
result.index = MultiIndex.from_product(
|
|
[range(len(arg2.columns)), range(len(result_index))]
|
|
)
|
|
result = result.swaplevel(1, 0).sort_index()
|
|
result.index = MultiIndex.from_product(
|
|
[result_index] + [arg2.columns]
|
|
)
|
|
else:
|
|
# empty result
|
|
result = DataFrame(
|
|
index=MultiIndex(
|
|
levels=[arg1.index, arg2.columns], codes=[[], []]
|
|
),
|
|
columns=arg2.columns,
|
|
dtype="float64",
|
|
)
|
|
|
|
# reset our index names to arg1 names
|
|
# reset our column names to arg2 names
|
|
# careful not to mutate the original names
|
|
result.columns = result.columns.set_names(arg1.columns.names)
|
|
result.index = result.index.set_names(
|
|
result_index.names + arg2.columns.names
|
|
)
|
|
|
|
return result
|
|
else:
|
|
results = {
|
|
i: f(*prep_binary(arg1.iloc[:, i], arg2))
|
|
for i in range(len(arg1.columns))
|
|
}
|
|
return dataframe_from_int_dict(results, arg1)
|
|
|
|
else:
|
|
return flex_binary_moment(arg2, arg1, f)
|
|
|
|
|
|
def zsqrt(x):
|
|
with np.errstate(all="ignore"):
|
|
result = np.sqrt(x)
|
|
mask = x < 0
|
|
|
|
if isinstance(x, ABCDataFrame):
|
|
if mask._values.any():
|
|
result[mask] = 0
|
|
else:
|
|
if mask.any():
|
|
result[mask] = 0
|
|
|
|
return result
|
|
|
|
|
|
def prep_binary(arg1, arg2):
|
|
# mask out values, this also makes a common index...
|
|
X = arg1 + 0 * arg2
|
|
Y = arg2 + 0 * arg1
|
|
return X, Y
|