Inzynierka/Lib/site-packages/pandas/io/formats/csvs.py
2023-06-02 12:51:02 +02:00

320 lines
10 KiB
Python

"""
Module for formatting output data into CSV files.
"""
from __future__ import annotations
import csv as csvlib
import os
from typing import (
TYPE_CHECKING,
Any,
Hashable,
Iterator,
Sequence,
cast,
)
import numpy as np
from pandas._libs import writers as libwriters
from pandas._typing import (
CompressionOptions,
FilePath,
FloatFormatType,
IndexLabel,
StorageOptions,
WriteBuffer,
)
from pandas.util._decorators import cache_readonly
from pandas.core.dtypes.generic import (
ABCDatetimeIndex,
ABCIndex,
ABCMultiIndex,
ABCPeriodIndex,
)
from pandas.core.dtypes.missing import notna
from pandas.core.indexes.api import Index
from pandas.io.common import get_handle
if TYPE_CHECKING:
from pandas.io.formats.format import DataFrameFormatter
class CSVFormatter:
cols: np.ndarray
def __init__(
self,
formatter: DataFrameFormatter,
path_or_buf: FilePath | WriteBuffer[str] | WriteBuffer[bytes] = "",
sep: str = ",",
cols: Sequence[Hashable] | None = None,
index_label: IndexLabel | None = None,
mode: str = "w",
encoding: str | None = None,
errors: str = "strict",
compression: CompressionOptions = "infer",
quoting: int | None = None,
lineterminator: str | None = "\n",
chunksize: int | None = None,
quotechar: str | None = '"',
date_format: str | None = None,
doublequote: bool = True,
escapechar: str | None = None,
storage_options: StorageOptions = None,
) -> None:
self.fmt = formatter
self.obj = self.fmt.frame
self.filepath_or_buffer = path_or_buf
self.encoding = encoding
self.compression: CompressionOptions = compression
self.mode = mode
self.storage_options = storage_options
self.sep = sep
self.index_label = self._initialize_index_label(index_label)
self.errors = errors
self.quoting = quoting or csvlib.QUOTE_MINIMAL
self.quotechar = self._initialize_quotechar(quotechar)
self.doublequote = doublequote
self.escapechar = escapechar
self.lineterminator = lineterminator or os.linesep
self.date_format = date_format
self.cols = self._initialize_columns(cols)
self.chunksize = self._initialize_chunksize(chunksize)
@property
def na_rep(self) -> str:
return self.fmt.na_rep
@property
def float_format(self) -> FloatFormatType | None:
return self.fmt.float_format
@property
def decimal(self) -> str:
return self.fmt.decimal
@property
def header(self) -> bool | Sequence[str]:
return self.fmt.header
@property
def index(self) -> bool:
return self.fmt.index
def _initialize_index_label(self, index_label: IndexLabel | None) -> IndexLabel:
if index_label is not False:
if index_label is None:
return self._get_index_label_from_obj()
elif not isinstance(index_label, (list, tuple, np.ndarray, ABCIndex)):
# given a string for a DF with Index
return [index_label]
return index_label
def _get_index_label_from_obj(self) -> Sequence[Hashable]:
if isinstance(self.obj.index, ABCMultiIndex):
return self._get_index_label_multiindex()
else:
return self._get_index_label_flat()
def _get_index_label_multiindex(self) -> Sequence[Hashable]:
return [name or "" for name in self.obj.index.names]
def _get_index_label_flat(self) -> Sequence[Hashable]:
index_label = self.obj.index.name
return [""] if index_label is None else [index_label]
def _initialize_quotechar(self, quotechar: str | None) -> str | None:
if self.quoting != csvlib.QUOTE_NONE:
# prevents crash in _csv
return quotechar
return None
@property
def has_mi_columns(self) -> bool:
return bool(isinstance(self.obj.columns, ABCMultiIndex))
def _initialize_columns(self, cols: Sequence[Hashable] | None) -> np.ndarray:
# validate mi options
if self.has_mi_columns:
if cols is not None:
msg = "cannot specify cols with a MultiIndex on the columns"
raise TypeError(msg)
if cols is not None:
if isinstance(cols, ABCIndex):
cols = cols._format_native_types(**self._number_format)
else:
cols = list(cols)
self.obj = self.obj.loc[:, cols]
# update columns to include possible multiplicity of dupes
# and make sure cols is just a list of labels
new_cols = self.obj.columns
return new_cols._format_native_types(**self._number_format)
def _initialize_chunksize(self, chunksize: int | None) -> int:
if chunksize is None:
return (100000 // (len(self.cols) or 1)) or 1
return int(chunksize)
@property
def _number_format(self) -> dict[str, Any]:
"""Dictionary used for storing number formatting settings."""
return {
"na_rep": self.na_rep,
"float_format": self.float_format,
"date_format": self.date_format,
"quoting": self.quoting,
"decimal": self.decimal,
}
@cache_readonly
def data_index(self) -> Index:
data_index = self.obj.index
if (
isinstance(data_index, (ABCDatetimeIndex, ABCPeriodIndex))
and self.date_format is not None
):
data_index = Index(
[x.strftime(self.date_format) if notna(x) else "" for x in data_index]
)
elif isinstance(data_index, ABCMultiIndex):
data_index = data_index.remove_unused_levels()
return data_index
@property
def nlevels(self) -> int:
if self.index:
return getattr(self.data_index, "nlevels", 1)
else:
return 0
@property
def _has_aliases(self) -> bool:
return isinstance(self.header, (tuple, list, np.ndarray, ABCIndex))
@property
def _need_to_save_header(self) -> bool:
return bool(self._has_aliases or self.header)
@property
def write_cols(self) -> Sequence[Hashable]:
if self._has_aliases:
assert not isinstance(self.header, bool)
if len(self.header) != len(self.cols):
raise ValueError(
f"Writing {len(self.cols)} cols but got {len(self.header)} aliases"
)
return self.header
else:
# self.cols is an ndarray derived from Index._format_native_types,
# so its entries are strings, i.e. hashable
return cast(Sequence[Hashable], self.cols)
@property
def encoded_labels(self) -> list[Hashable]:
encoded_labels: list[Hashable] = []
if self.index and self.index_label:
assert isinstance(self.index_label, Sequence)
encoded_labels = list(self.index_label)
if not self.has_mi_columns or self._has_aliases:
encoded_labels += list(self.write_cols)
return encoded_labels
def save(self) -> None:
"""
Create the writer & save.
"""
# apply compression and byte/text conversion
with get_handle(
self.filepath_or_buffer,
self.mode,
encoding=self.encoding,
errors=self.errors,
compression=self.compression,
storage_options=self.storage_options,
) as handles:
# Note: self.encoding is irrelevant here
self.writer = csvlib.writer(
handles.handle,
lineterminator=self.lineterminator,
delimiter=self.sep,
quoting=self.quoting,
doublequote=self.doublequote,
escapechar=self.escapechar,
quotechar=self.quotechar,
)
self._save()
def _save(self) -> None:
if self._need_to_save_header:
self._save_header()
self._save_body()
def _save_header(self) -> None:
if not self.has_mi_columns or self._has_aliases:
self.writer.writerow(self.encoded_labels)
else:
for row in self._generate_multiindex_header_rows():
self.writer.writerow(row)
def _generate_multiindex_header_rows(self) -> Iterator[list[Hashable]]:
columns = self.obj.columns
for i in range(columns.nlevels):
# we need at least 1 index column to write our col names
col_line = []
if self.index:
# name is the first column
col_line.append(columns.names[i])
if isinstance(self.index_label, list) and len(self.index_label) > 1:
col_line.extend([""] * (len(self.index_label) - 1))
col_line.extend(columns._get_level_values(i))
yield col_line
# Write out the index line if it's not empty.
# Otherwise, we will print out an extraneous
# blank line between the mi and the data rows.
if self.encoded_labels and set(self.encoded_labels) != {""}:
yield self.encoded_labels + [""] * len(columns)
def _save_body(self) -> None:
nrows = len(self.data_index)
chunks = (nrows // self.chunksize) + 1
for i in range(chunks):
start_i = i * self.chunksize
end_i = min(start_i + self.chunksize, nrows)
if start_i >= end_i:
break
self._save_chunk(start_i, end_i)
def _save_chunk(self, start_i: int, end_i: int) -> None:
# create the data for a chunk
slicer = slice(start_i, end_i)
df = self.obj.iloc[slicer]
res = df._mgr.to_native_types(**self._number_format)
data = [res.iget_values(i) for i in range(len(res.items))]
ix = self.data_index[slicer]._format_native_types(**self._number_format)
libwriters.write_csv_rows(
data,
ix,
self.nlevels,
self.cols,
self.writer,
)