38 lines
1.3 KiB
Python
38 lines
1.3 KiB
Python
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas.tests.extension.base.base import BaseExtensionTests
|
|
|
|
|
|
class BaseAccumulateTests(BaseExtensionTests):
|
|
"""
|
|
Accumulation specific tests. Generally these only
|
|
make sense for numeric/boolean operations.
|
|
"""
|
|
|
|
def check_accumulate(self, s, op_name, skipna):
|
|
result = getattr(s, op_name)(skipna=skipna)
|
|
|
|
if result.dtype == pd.Float32Dtype() and op_name == "cumprod" and skipna:
|
|
pytest.skip(
|
|
f"Float32 precision lead to large differences with op {op_name} "
|
|
f"and skipna={skipna}"
|
|
)
|
|
|
|
expected = getattr(s.astype("float64"), op_name)(skipna=skipna)
|
|
self.assert_series_equal(result, expected, check_dtype=False)
|
|
|
|
@pytest.mark.parametrize("skipna", [True, False])
|
|
def test_accumulate_series_raises(self, data, all_numeric_accumulations, skipna):
|
|
op_name = all_numeric_accumulations
|
|
ser = pd.Series(data)
|
|
|
|
with pytest.raises(NotImplementedError):
|
|
getattr(ser, op_name)(skipna=skipna)
|
|
|
|
@pytest.mark.parametrize("skipna", [True, False])
|
|
def test_accumulate_series(self, data, all_numeric_accumulations, skipna):
|
|
op_name = all_numeric_accumulations
|
|
ser = pd.Series(data)
|
|
self.check_accumulate(ser, op_name, skipna)
|