305 lines
9.6 KiB
Python
305 lines
9.6 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
Series,
|
|
Timestamp,
|
|
date_range,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestDataFrameDiff:
|
|
def test_diff_requires_integer(self):
|
|
df = DataFrame(np.random.randn(2, 2))
|
|
with pytest.raises(ValueError, match="periods must be an integer"):
|
|
df.diff(1.5)
|
|
|
|
# GH#44572 np.int64 is accepted
|
|
@pytest.mark.parametrize("num", [1, np.int64(1)])
|
|
def test_diff(self, datetime_frame, num):
|
|
df = datetime_frame
|
|
the_diff = df.diff(num)
|
|
|
|
expected = df["A"] - df["A"].shift(num)
|
|
tm.assert_series_equal(the_diff["A"], expected)
|
|
|
|
def test_diff_int_dtype(self):
|
|
# int dtype
|
|
a = 10_000_000_000_000_000
|
|
b = a + 1
|
|
ser = Series([a, b])
|
|
|
|
rs = DataFrame({"s": ser}).diff()
|
|
assert rs.s[1] == 1
|
|
|
|
def test_diff_mixed_numeric(self, datetime_frame):
|
|
# mixed numeric
|
|
tf = datetime_frame.astype("float32")
|
|
the_diff = tf.diff(1)
|
|
tm.assert_series_equal(the_diff["A"], tf["A"] - tf["A"].shift(1))
|
|
|
|
def test_diff_axis1_nonconsolidated(self):
|
|
# GH#10907
|
|
df = DataFrame({"y": Series([2]), "z": Series([3])})
|
|
df.insert(0, "x", 1)
|
|
result = df.diff(axis=1)
|
|
expected = DataFrame({"x": np.nan, "y": Series(1), "z": Series(1)})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_diff_timedelta64_with_nat(self):
|
|
# GH#32441
|
|
arr = np.arange(6).reshape(3, 2).astype("timedelta64[ns]")
|
|
arr[:, 0] = np.timedelta64("NaT", "ns")
|
|
|
|
df = DataFrame(arr)
|
|
result = df.diff(1, axis=0)
|
|
|
|
expected = DataFrame({0: df[0], 1: [pd.NaT, pd.Timedelta(2), pd.Timedelta(2)]})
|
|
tm.assert_equal(result, expected)
|
|
|
|
result = df.diff(0)
|
|
expected = df - df
|
|
assert expected[0].isna().all()
|
|
tm.assert_equal(result, expected)
|
|
|
|
result = df.diff(-1, axis=1)
|
|
expected = df * np.nan
|
|
tm.assert_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("tz", [None, "UTC"])
|
|
def test_diff_datetime_axis0_with_nat(self, tz):
|
|
# GH#32441
|
|
dti = pd.DatetimeIndex(["NaT", "2019-01-01", "2019-01-02"], tz=tz)
|
|
ser = Series(dti)
|
|
|
|
df = ser.to_frame()
|
|
|
|
result = df.diff()
|
|
ex_index = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta(days=1)])
|
|
expected = Series(ex_index).to_frame()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("tz", [None, "UTC"])
|
|
def test_diff_datetime_with_nat_zero_periods(self, tz):
|
|
# diff on NaT values should give NaT, not timedelta64(0)
|
|
dti = date_range("2016-01-01", periods=4, tz=tz)
|
|
ser = Series(dti)
|
|
df = ser.to_frame()
|
|
|
|
df[1] = ser.copy()
|
|
|
|
df.iloc[:, 0] = pd.NaT
|
|
|
|
expected = df - df
|
|
assert expected[0].isna().all()
|
|
|
|
result = df.diff(0, axis=0)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = df.diff(0, axis=1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("tz", [None, "UTC"])
|
|
def test_diff_datetime_axis0(self, tz):
|
|
# GH#18578
|
|
df = DataFrame(
|
|
{
|
|
0: date_range("2010", freq="D", periods=2, tz=tz),
|
|
1: date_range("2010", freq="D", periods=2, tz=tz),
|
|
}
|
|
)
|
|
|
|
result = df.diff(axis=0)
|
|
expected = DataFrame(
|
|
{
|
|
0: pd.TimedeltaIndex(["NaT", "1 days"]),
|
|
1: pd.TimedeltaIndex(["NaT", "1 days"]),
|
|
}
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("tz", [None, "UTC"])
|
|
def test_diff_datetime_axis1(self, tz):
|
|
# GH#18578
|
|
df = DataFrame(
|
|
{
|
|
0: date_range("2010", freq="D", periods=2, tz=tz),
|
|
1: date_range("2010", freq="D", periods=2, tz=tz),
|
|
}
|
|
)
|
|
|
|
result = df.diff(axis=1)
|
|
expected = DataFrame(
|
|
{
|
|
0: pd.TimedeltaIndex(["NaT", "NaT"]),
|
|
1: pd.TimedeltaIndex(["0 days", "0 days"]),
|
|
}
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_diff_timedelta(self):
|
|
# GH#4533
|
|
df = DataFrame(
|
|
{
|
|
"time": [Timestamp("20130101 9:01"), Timestamp("20130101 9:02")],
|
|
"value": [1.0, 2.0],
|
|
}
|
|
)
|
|
|
|
res = df.diff()
|
|
exp = DataFrame(
|
|
[[pd.NaT, np.nan], [pd.Timedelta("00:01:00"), 1]], columns=["time", "value"]
|
|
)
|
|
tm.assert_frame_equal(res, exp)
|
|
|
|
def test_diff_mixed_dtype(self):
|
|
df = DataFrame(np.random.randn(5, 3))
|
|
df["A"] = np.array([1, 2, 3, 4, 5], dtype=object)
|
|
|
|
result = df.diff()
|
|
assert result[0].dtype == np.float64
|
|
|
|
def test_diff_neg_n(self, datetime_frame):
|
|
rs = datetime_frame.diff(-1)
|
|
xp = datetime_frame - datetime_frame.shift(-1)
|
|
tm.assert_frame_equal(rs, xp)
|
|
|
|
def test_diff_float_n(self, datetime_frame):
|
|
rs = datetime_frame.diff(1.0)
|
|
xp = datetime_frame.diff(1)
|
|
tm.assert_frame_equal(rs, xp)
|
|
|
|
def test_diff_axis(self):
|
|
# GH#9727
|
|
df = DataFrame([[1.0, 2.0], [3.0, 4.0]])
|
|
tm.assert_frame_equal(
|
|
df.diff(axis=1), DataFrame([[np.nan, 1.0], [np.nan, 1.0]])
|
|
)
|
|
tm.assert_frame_equal(
|
|
df.diff(axis=0), DataFrame([[np.nan, np.nan], [2.0, 2.0]])
|
|
)
|
|
|
|
def test_diff_period(self):
|
|
# GH#32995 Don't pass an incorrect axis
|
|
pi = date_range("2016-01-01", periods=3).to_period("D")
|
|
df = DataFrame({"A": pi})
|
|
|
|
result = df.diff(1, axis=1)
|
|
|
|
expected = (df - pd.NaT).astype(object)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_diff_axis1_mixed_dtypes(self):
|
|
# GH#32995 operate column-wise when we have mixed dtypes and axis=1
|
|
df = DataFrame({"A": range(3), "B": 2 * np.arange(3, dtype=np.float64)})
|
|
|
|
expected = DataFrame({"A": [np.nan, np.nan, np.nan], "B": df["B"] / 2})
|
|
|
|
result = df.diff(axis=1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# GH#21437 mixed-float-dtypes
|
|
df = DataFrame(
|
|
{"a": np.arange(3, dtype="float32"), "b": np.arange(3, dtype="float64")}
|
|
)
|
|
result = df.diff(axis=1)
|
|
expected = DataFrame({"a": df["a"] * np.nan, "b": df["b"] * 0})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_diff_axis1_mixed_dtypes_large_periods(self):
|
|
# GH#32995 operate column-wise when we have mixed dtypes and axis=1
|
|
df = DataFrame({"A": range(3), "B": 2 * np.arange(3, dtype=np.float64)})
|
|
|
|
expected = df * np.nan
|
|
|
|
result = df.diff(axis=1, periods=3)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_diff_axis1_mixed_dtypes_negative_periods(self):
|
|
# GH#32995 operate column-wise when we have mixed dtypes and axis=1
|
|
df = DataFrame({"A": range(3), "B": 2 * np.arange(3, dtype=np.float64)})
|
|
|
|
expected = DataFrame({"A": -1.0 * df["A"], "B": df["B"] * np.nan})
|
|
|
|
result = df.diff(axis=1, periods=-1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_diff_sparse(self):
|
|
# GH#28813 .diff() should work for sparse dataframes as well
|
|
sparse_df = DataFrame([[0, 1], [1, 0]], dtype="Sparse[int]")
|
|
|
|
result = sparse_df.diff()
|
|
expected = DataFrame(
|
|
[[np.nan, np.nan], [1.0, -1.0]], dtype=pd.SparseDtype("float", 0.0)
|
|
)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"axis,expected",
|
|
[
|
|
(
|
|
0,
|
|
DataFrame(
|
|
{
|
|
"a": [np.nan, 0, 1, 0, np.nan, np.nan, np.nan, 0],
|
|
"b": [np.nan, 1, np.nan, np.nan, -2, 1, np.nan, np.nan],
|
|
"c": np.repeat(np.nan, 8),
|
|
"d": [np.nan, 3, 5, 7, 9, 11, 13, 15],
|
|
},
|
|
dtype="Int64",
|
|
),
|
|
),
|
|
(
|
|
1,
|
|
DataFrame(
|
|
{
|
|
"a": np.repeat(np.nan, 8),
|
|
"b": [0, 1, np.nan, 1, np.nan, np.nan, np.nan, 0],
|
|
"c": np.repeat(np.nan, 8),
|
|
"d": np.repeat(np.nan, 8),
|
|
},
|
|
dtype="Int64",
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_diff_integer_na(self, axis, expected):
|
|
# GH#24171 IntegerNA Support for DataFrame.diff()
|
|
df = DataFrame(
|
|
{
|
|
"a": np.repeat([0, 1, np.nan, 2], 2),
|
|
"b": np.tile([0, 1, np.nan, 2], 2),
|
|
"c": np.repeat(np.nan, 8),
|
|
"d": np.arange(1, 9) ** 2,
|
|
},
|
|
dtype="Int64",
|
|
)
|
|
|
|
# Test case for default behaviour of diff
|
|
result = df.diff(axis=axis)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_diff_readonly(self):
|
|
# https://github.com/pandas-dev/pandas/issues/35559
|
|
arr = np.random.randn(5, 2)
|
|
arr.flags.writeable = False
|
|
df = DataFrame(arr)
|
|
result = df.diff()
|
|
expected = DataFrame(np.array(df)).diff()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_diff_all_int_dtype(self, any_int_numpy_dtype):
|
|
# GH 14773
|
|
df = DataFrame(range(5))
|
|
df = df.astype(any_int_numpy_dtype)
|
|
result = df.diff()
|
|
expected_dtype = (
|
|
"float32" if any_int_numpy_dtype in ("int8", "int16") else "float64"
|
|
)
|
|
expected = DataFrame([np.nan, 1.0, 1.0, 1.0, 1.0], dtype=expected_dtype)
|
|
tm.assert_frame_equal(result, expected)
|