Inzynierka/Lib/site-packages/pandas/tests/indexes/multi/test_analytics.py
2023-06-02 12:51:02 +02:00

264 lines
6.6 KiB
Python

import numpy as np
import pytest
import pandas as pd
from pandas import (
Index,
MultiIndex,
date_range,
period_range,
)
import pandas._testing as tm
def test_infer_objects(idx):
with pytest.raises(NotImplementedError, match="to_frame"):
idx.infer_objects()
def test_shift(idx):
# GH8083 test the base class for shift
msg = (
"This method is only implemented for DatetimeIndex, PeriodIndex and "
"TimedeltaIndex; Got type MultiIndex"
)
with pytest.raises(NotImplementedError, match=msg):
idx.shift(1)
with pytest.raises(NotImplementedError, match=msg):
idx.shift(1, 2)
def test_groupby(idx):
groups = idx.groupby(np.array([1, 1, 1, 2, 2, 2]))
labels = idx.tolist()
exp = {1: labels[:3], 2: labels[3:]}
tm.assert_dict_equal(groups, exp)
# GH5620
groups = idx.groupby(idx)
exp = {key: [key] for key in idx}
tm.assert_dict_equal(groups, exp)
def test_truncate_multiindex():
# GH 34564 for MultiIndex level names check
major_axis = Index(list(range(4)))
minor_axis = Index(list(range(2)))
major_codes = np.array([0, 0, 1, 2, 3, 3])
minor_codes = np.array([0, 1, 0, 1, 0, 1])
index = MultiIndex(
levels=[major_axis, minor_axis],
codes=[major_codes, minor_codes],
names=["L1", "L2"],
)
result = index.truncate(before=1)
assert "foo" not in result.levels[0]
assert 1 in result.levels[0]
assert index.names == result.names
result = index.truncate(after=1)
assert 2 not in result.levels[0]
assert 1 in result.levels[0]
assert index.names == result.names
result = index.truncate(before=1, after=2)
assert len(result.levels[0]) == 2
assert index.names == result.names
msg = "after < before"
with pytest.raises(ValueError, match=msg):
index.truncate(3, 1)
# TODO: reshape
def test_reorder_levels(idx):
# this blows up
with pytest.raises(IndexError, match="^Too many levels"):
idx.reorder_levels([2, 1, 0])
def test_numpy_repeat():
reps = 2
numbers = [1, 2, 3]
names = np.array(["foo", "bar"])
m = MultiIndex.from_product([numbers, names], names=names)
expected = MultiIndex.from_product([numbers, names.repeat(reps)], names=names)
tm.assert_index_equal(np.repeat(m, reps), expected)
msg = "the 'axis' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.repeat(m, reps, axis=1)
def test_append_mixed_dtypes():
# GH 13660
dti = date_range("2011-01-01", freq="M", periods=3)
dti_tz = date_range("2011-01-01", freq="M", periods=3, tz="US/Eastern")
pi = period_range("2011-01", freq="M", periods=3)
mi = MultiIndex.from_arrays(
[[1, 2, 3], [1.1, np.nan, 3.3], ["a", "b", "c"], dti, dti_tz, pi]
)
assert mi.nlevels == 6
res = mi.append(mi)
exp = MultiIndex.from_arrays(
[
[1, 2, 3, 1, 2, 3],
[1.1, np.nan, 3.3, 1.1, np.nan, 3.3],
["a", "b", "c", "a", "b", "c"],
dti.append(dti),
dti_tz.append(dti_tz),
pi.append(pi),
]
)
tm.assert_index_equal(res, exp)
other = MultiIndex.from_arrays(
[
["x", "y", "z"],
["x", "y", "z"],
["x", "y", "z"],
["x", "y", "z"],
["x", "y", "z"],
["x", "y", "z"],
]
)
res = mi.append(other)
exp = MultiIndex.from_arrays(
[
[1, 2, 3, "x", "y", "z"],
[1.1, np.nan, 3.3, "x", "y", "z"],
["a", "b", "c", "x", "y", "z"],
dti.append(Index(["x", "y", "z"])),
dti_tz.append(Index(["x", "y", "z"])),
pi.append(Index(["x", "y", "z"])),
]
)
tm.assert_index_equal(res, exp)
def test_iter(idx):
result = list(idx)
expected = [
("foo", "one"),
("foo", "two"),
("bar", "one"),
("baz", "two"),
("qux", "one"),
("qux", "two"),
]
assert result == expected
def test_sub(idx):
first = idx
# - now raises (previously was set op difference)
msg = "cannot perform __sub__ with this index type: MultiIndex"
with pytest.raises(TypeError, match=msg):
first - idx[-3:]
with pytest.raises(TypeError, match=msg):
idx[-3:] - first
with pytest.raises(TypeError, match=msg):
idx[-3:] - first.tolist()
msg = "cannot perform __rsub__ with this index type: MultiIndex"
with pytest.raises(TypeError, match=msg):
first.tolist() - idx[-3:]
def test_map(idx):
# callable
index = idx
result = index.map(lambda x: x)
tm.assert_index_equal(result, index)
@pytest.mark.parametrize(
"mapper",
[
lambda values, idx: {i: e for e, i in zip(values, idx)},
lambda values, idx: pd.Series(values, idx),
],
)
def test_map_dictlike(idx, mapper):
identity = mapper(idx.values, idx)
# we don't infer to uint64 dtype for a dict
if idx.dtype == np.uint64 and isinstance(identity, dict):
expected = idx.astype("int64")
else:
expected = idx
result = idx.map(identity)
tm.assert_index_equal(result, expected)
# empty mappable
expected = Index([np.nan] * len(idx))
result = idx.map(mapper(expected, idx))
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"func",
[
np.exp,
np.exp2,
np.expm1,
np.log,
np.log2,
np.log10,
np.log1p,
np.sqrt,
np.sin,
np.cos,
np.tan,
np.arcsin,
np.arccos,
np.arctan,
np.sinh,
np.cosh,
np.tanh,
np.arcsinh,
np.arccosh,
np.arctanh,
np.deg2rad,
np.rad2deg,
],
ids=lambda func: func.__name__,
)
def test_numpy_ufuncs(idx, func):
# test ufuncs of numpy. see:
# https://numpy.org/doc/stable/reference/ufuncs.html
expected_exception = TypeError
msg = (
"loop of ufunc does not support argument 0 of type tuple which "
f"has no callable {func.__name__} method"
)
with pytest.raises(expected_exception, match=msg):
func(idx)
@pytest.mark.parametrize(
"func",
[np.isfinite, np.isinf, np.isnan, np.signbit],
ids=lambda func: func.__name__,
)
def test_numpy_type_funcs(idx, func):
msg = (
f"ufunc '{func.__name__}' not supported for the input types, and the inputs "
"could not be safely coerced to any supported types according to "
"the casting rule ''safe''"
)
with pytest.raises(TypeError, match=msg):
func(idx)