340 lines
11 KiB
Python
340 lines
11 KiB
Python
from itertools import product
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas._libs import hashtable
|
|
|
|
from pandas import (
|
|
NA,
|
|
DatetimeIndex,
|
|
MultiIndex,
|
|
Series,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
@pytest.mark.parametrize("names", [None, ["first", "second"]])
|
|
def test_unique(names):
|
|
mi = MultiIndex.from_arrays([[1, 2, 1, 2], [1, 1, 1, 2]], names=names)
|
|
|
|
res = mi.unique()
|
|
exp = MultiIndex.from_arrays([[1, 2, 2], [1, 1, 2]], names=mi.names)
|
|
tm.assert_index_equal(res, exp)
|
|
|
|
mi = MultiIndex.from_arrays([list("aaaa"), list("abab")], names=names)
|
|
res = mi.unique()
|
|
exp = MultiIndex.from_arrays([list("aa"), list("ab")], names=mi.names)
|
|
tm.assert_index_equal(res, exp)
|
|
|
|
mi = MultiIndex.from_arrays([list("aaaa"), list("aaaa")], names=names)
|
|
res = mi.unique()
|
|
exp = MultiIndex.from_arrays([["a"], ["a"]], names=mi.names)
|
|
tm.assert_index_equal(res, exp)
|
|
|
|
# GH #20568 - empty MI
|
|
mi = MultiIndex.from_arrays([[], []], names=names)
|
|
res = mi.unique()
|
|
tm.assert_index_equal(mi, res)
|
|
|
|
|
|
def test_unique_datetimelike():
|
|
idx1 = DatetimeIndex(
|
|
["2015-01-01", "2015-01-01", "2015-01-01", "2015-01-01", "NaT", "NaT"]
|
|
)
|
|
idx2 = DatetimeIndex(
|
|
["2015-01-01", "2015-01-01", "2015-01-02", "2015-01-02", "NaT", "2015-01-01"],
|
|
tz="Asia/Tokyo",
|
|
)
|
|
result = MultiIndex.from_arrays([idx1, idx2]).unique()
|
|
|
|
eidx1 = DatetimeIndex(["2015-01-01", "2015-01-01", "NaT", "NaT"])
|
|
eidx2 = DatetimeIndex(
|
|
["2015-01-01", "2015-01-02", "NaT", "2015-01-01"], tz="Asia/Tokyo"
|
|
)
|
|
exp = MultiIndex.from_arrays([eidx1, eidx2])
|
|
tm.assert_index_equal(result, exp)
|
|
|
|
|
|
@pytest.mark.parametrize("level", [0, "first", 1, "second"])
|
|
def test_unique_level(idx, level):
|
|
# GH #17896 - with level= argument
|
|
result = idx.unique(level=level)
|
|
expected = idx.get_level_values(level).unique()
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# With already unique level
|
|
mi = MultiIndex.from_arrays([[1, 3, 2, 4], [1, 3, 2, 5]], names=["first", "second"])
|
|
result = mi.unique(level=level)
|
|
expected = mi.get_level_values(level)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# With empty MI
|
|
mi = MultiIndex.from_arrays([[], []], names=["first", "second"])
|
|
result = mi.unique(level=level)
|
|
expected = mi.get_level_values(level)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
def test_duplicate_multiindex_codes():
|
|
# GH 17464
|
|
# Make sure that a MultiIndex with duplicate levels throws a ValueError
|
|
msg = r"Level values must be unique: \[[A', ]+\] on level 0"
|
|
with pytest.raises(ValueError, match=msg):
|
|
mi = MultiIndex([["A"] * 10, range(10)], [[0] * 10, range(10)])
|
|
|
|
# And that using set_levels with duplicate levels fails
|
|
mi = MultiIndex.from_arrays([["A", "A", "B", "B", "B"], [1, 2, 1, 2, 3]])
|
|
msg = r"Level values must be unique: \[[AB', ]+\] on level 0"
|
|
with pytest.raises(ValueError, match=msg):
|
|
mi.set_levels([["A", "B", "A", "A", "B"], [2, 1, 3, -2, 5]])
|
|
|
|
|
|
@pytest.mark.parametrize("names", [["a", "b", "a"], [1, 1, 2], [1, "a", 1]])
|
|
def test_duplicate_level_names(names):
|
|
# GH18872, GH19029
|
|
mi = MultiIndex.from_product([[0, 1]] * 3, names=names)
|
|
assert mi.names == names
|
|
|
|
# With .rename()
|
|
mi = MultiIndex.from_product([[0, 1]] * 3)
|
|
mi = mi.rename(names)
|
|
assert mi.names == names
|
|
|
|
# With .rename(., level=)
|
|
mi.rename(names[1], level=1, inplace=True)
|
|
mi = mi.rename([names[0], names[2]], level=[0, 2])
|
|
assert mi.names == names
|
|
|
|
|
|
def test_duplicate_meta_data():
|
|
# GH 10115
|
|
mi = MultiIndex(
|
|
levels=[[0, 1], [0, 1, 2]], codes=[[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]
|
|
)
|
|
|
|
for idx in [
|
|
mi,
|
|
mi.set_names([None, None]),
|
|
mi.set_names([None, "Num"]),
|
|
mi.set_names(["Upper", "Num"]),
|
|
]:
|
|
assert idx.has_duplicates
|
|
assert idx.drop_duplicates().names == idx.names
|
|
|
|
|
|
def test_has_duplicates(idx, idx_dup):
|
|
# see fixtures
|
|
assert idx.is_unique is True
|
|
assert idx.has_duplicates is False
|
|
assert idx_dup.is_unique is False
|
|
assert idx_dup.has_duplicates is True
|
|
|
|
mi = MultiIndex(
|
|
levels=[[0, 1], [0, 1, 2]], codes=[[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]
|
|
)
|
|
assert mi.is_unique is False
|
|
assert mi.has_duplicates is True
|
|
|
|
# single instance of NaN
|
|
mi_nan = MultiIndex(
|
|
levels=[["a", "b"], [0, 1]], codes=[[-1, 0, 0, 1, 1], [-1, 0, 1, 0, 1]]
|
|
)
|
|
assert mi_nan.is_unique is True
|
|
assert mi_nan.has_duplicates is False
|
|
|
|
# multiple instances of NaN
|
|
mi_nan_dup = MultiIndex(
|
|
levels=[["a", "b"], [0, 1]], codes=[[-1, -1, 0, 0, 1, 1], [-1, -1, 0, 1, 0, 1]]
|
|
)
|
|
assert mi_nan_dup.is_unique is False
|
|
assert mi_nan_dup.has_duplicates is True
|
|
|
|
|
|
def test_has_duplicates_from_tuples():
|
|
# GH 9075
|
|
t = [
|
|
("x", "out", "z", 5, "y", "in", "z", 169),
|
|
("x", "out", "z", 7, "y", "in", "z", 119),
|
|
("x", "out", "z", 9, "y", "in", "z", 135),
|
|
("x", "out", "z", 13, "y", "in", "z", 145),
|
|
("x", "out", "z", 14, "y", "in", "z", 158),
|
|
("x", "out", "z", 16, "y", "in", "z", 122),
|
|
("x", "out", "z", 17, "y", "in", "z", 160),
|
|
("x", "out", "z", 18, "y", "in", "z", 180),
|
|
("x", "out", "z", 20, "y", "in", "z", 143),
|
|
("x", "out", "z", 21, "y", "in", "z", 128),
|
|
("x", "out", "z", 22, "y", "in", "z", 129),
|
|
("x", "out", "z", 25, "y", "in", "z", 111),
|
|
("x", "out", "z", 28, "y", "in", "z", 114),
|
|
("x", "out", "z", 29, "y", "in", "z", 121),
|
|
("x", "out", "z", 31, "y", "in", "z", 126),
|
|
("x", "out", "z", 32, "y", "in", "z", 155),
|
|
("x", "out", "z", 33, "y", "in", "z", 123),
|
|
("x", "out", "z", 12, "y", "in", "z", 144),
|
|
]
|
|
|
|
mi = MultiIndex.from_tuples(t)
|
|
assert not mi.has_duplicates
|
|
|
|
|
|
@pytest.mark.parametrize("nlevels", [4, 8])
|
|
@pytest.mark.parametrize("with_nulls", [True, False])
|
|
def test_has_duplicates_overflow(nlevels, with_nulls):
|
|
# handle int64 overflow if possible
|
|
# no overflow with 4
|
|
# overflow possible with 8
|
|
codes = np.tile(np.arange(500), 2)
|
|
level = np.arange(500)
|
|
|
|
if with_nulls: # inject some null values
|
|
codes[500] = -1 # common nan value
|
|
codes = [codes.copy() for i in range(nlevels)]
|
|
for i in range(nlevels):
|
|
codes[i][500 + i - nlevels // 2] = -1
|
|
|
|
codes += [np.array([-1, 1]).repeat(500)]
|
|
else:
|
|
codes = [codes] * nlevels + [np.arange(2).repeat(500)]
|
|
|
|
levels = [level] * nlevels + [[0, 1]]
|
|
|
|
# no dups
|
|
mi = MultiIndex(levels=levels, codes=codes)
|
|
assert not mi.has_duplicates
|
|
|
|
# with a dup
|
|
if with_nulls:
|
|
|
|
def f(a):
|
|
return np.insert(a, 1000, a[0])
|
|
|
|
codes = list(map(f, codes))
|
|
mi = MultiIndex(levels=levels, codes=codes)
|
|
else:
|
|
values = mi.values.tolist()
|
|
mi = MultiIndex.from_tuples(values + [values[0]])
|
|
|
|
assert mi.has_duplicates
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"keep, expected",
|
|
[
|
|
("first", np.array([False, False, False, True, True, False])),
|
|
("last", np.array([False, True, True, False, False, False])),
|
|
(False, np.array([False, True, True, True, True, False])),
|
|
],
|
|
)
|
|
def test_duplicated(idx_dup, keep, expected):
|
|
result = idx_dup.duplicated(keep=keep)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.arm_slow
|
|
def test_duplicated_large(keep):
|
|
# GH 9125
|
|
n, k = 200, 5000
|
|
levels = [np.arange(n), tm.makeStringIndex(n), 1000 + np.arange(n)]
|
|
codes = [np.random.choice(n, k * n) for lev in levels]
|
|
mi = MultiIndex(levels=levels, codes=codes)
|
|
|
|
result = mi.duplicated(keep=keep)
|
|
expected = hashtable.duplicated(mi.values, keep=keep)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
|
|
def test_duplicated2():
|
|
# TODO: more informative test name
|
|
# GH5873
|
|
for a in [101, 102]:
|
|
mi = MultiIndex.from_arrays([[101, a], [3.5, np.nan]])
|
|
assert not mi.has_duplicates
|
|
|
|
tm.assert_numpy_array_equal(mi.duplicated(), np.zeros(2, dtype="bool"))
|
|
|
|
for n in range(1, 6): # 1st level shape
|
|
for m in range(1, 5): # 2nd level shape
|
|
# all possible unique combinations, including nan
|
|
codes = product(range(-1, n), range(-1, m))
|
|
mi = MultiIndex(
|
|
levels=[list("abcde")[:n], list("WXYZ")[:m]],
|
|
codes=np.random.permutation(list(codes)).T,
|
|
)
|
|
assert len(mi) == (n + 1) * (m + 1)
|
|
assert not mi.has_duplicates
|
|
|
|
tm.assert_numpy_array_equal(
|
|
mi.duplicated(), np.zeros(len(mi), dtype="bool")
|
|
)
|
|
|
|
|
|
def test_duplicated_drop_duplicates():
|
|
# GH#4060
|
|
idx = MultiIndex.from_arrays(([1, 2, 3, 1, 2, 3], [1, 1, 1, 1, 2, 2]))
|
|
|
|
expected = np.array([False, False, False, True, False, False], dtype=bool)
|
|
duplicated = idx.duplicated()
|
|
tm.assert_numpy_array_equal(duplicated, expected)
|
|
assert duplicated.dtype == bool
|
|
expected = MultiIndex.from_arrays(([1, 2, 3, 2, 3], [1, 1, 1, 2, 2]))
|
|
tm.assert_index_equal(idx.drop_duplicates(), expected)
|
|
|
|
expected = np.array([True, False, False, False, False, False])
|
|
duplicated = idx.duplicated(keep="last")
|
|
tm.assert_numpy_array_equal(duplicated, expected)
|
|
assert duplicated.dtype == bool
|
|
expected = MultiIndex.from_arrays(([2, 3, 1, 2, 3], [1, 1, 1, 2, 2]))
|
|
tm.assert_index_equal(idx.drop_duplicates(keep="last"), expected)
|
|
|
|
expected = np.array([True, False, False, True, False, False])
|
|
duplicated = idx.duplicated(keep=False)
|
|
tm.assert_numpy_array_equal(duplicated, expected)
|
|
assert duplicated.dtype == bool
|
|
expected = MultiIndex.from_arrays(([2, 3, 2, 3], [1, 1, 2, 2]))
|
|
tm.assert_index_equal(idx.drop_duplicates(keep=False), expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype",
|
|
[
|
|
np.complex64,
|
|
np.complex128,
|
|
],
|
|
)
|
|
def test_duplicated_series_complex_numbers(dtype):
|
|
# GH 17927
|
|
expected = Series(
|
|
[False, False, False, True, False, False, False, True, False, True],
|
|
dtype=bool,
|
|
)
|
|
result = Series(
|
|
[
|
|
np.nan + np.nan * 1j,
|
|
0,
|
|
1j,
|
|
1j,
|
|
1,
|
|
1 + 1j,
|
|
1 + 2j,
|
|
1 + 1j,
|
|
np.nan,
|
|
np.nan + np.nan * 1j,
|
|
],
|
|
dtype=dtype,
|
|
).duplicated()
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_midx_unique_ea_dtype():
|
|
# GH#48335
|
|
vals_a = Series([1, 2, NA, NA], dtype="Int64")
|
|
vals_b = np.array([1, 2, 3, 3])
|
|
midx = MultiIndex.from_arrays([vals_a, vals_b], names=["a", "b"])
|
|
result = midx.unique()
|
|
|
|
exp_vals_a = Series([1, 2, NA], dtype="Int64")
|
|
exp_vals_b = np.array([1, 2, 3])
|
|
expected = MultiIndex.from_arrays([exp_vals_a, exp_vals_b], names=["a", "b"])
|
|
tm.assert_index_equal(result, expected)
|