Inzynierka/Lib/site-packages/pandas/tests/indexes/multi/test_indexing.py
2023-06-02 12:51:02 +02:00

974 lines
34 KiB
Python

from datetime import timedelta
import re
import numpy as np
import pytest
from pandas.errors import (
InvalidIndexError,
PerformanceWarning,
)
import pandas as pd
from pandas import (
Categorical,
Index,
MultiIndex,
date_range,
)
import pandas._testing as tm
class TestSliceLocs:
def test_slice_locs_partial(self, idx):
sorted_idx, _ = idx.sortlevel(0)
result = sorted_idx.slice_locs(("foo", "two"), ("qux", "one"))
assert result == (1, 5)
result = sorted_idx.slice_locs(None, ("qux", "one"))
assert result == (0, 5)
result = sorted_idx.slice_locs(("foo", "two"), None)
assert result == (1, len(sorted_idx))
result = sorted_idx.slice_locs("bar", "baz")
assert result == (2, 4)
def test_slice_locs(self):
df = tm.makeTimeDataFrame()
stacked = df.stack()
idx = stacked.index
slob = slice(*idx.slice_locs(df.index[5], df.index[15]))
sliced = stacked[slob]
expected = df[5:16].stack()
tm.assert_almost_equal(sliced.values, expected.values)
slob = slice(
*idx.slice_locs(
df.index[5] + timedelta(seconds=30),
df.index[15] - timedelta(seconds=30),
)
)
sliced = stacked[slob]
expected = df[6:15].stack()
tm.assert_almost_equal(sliced.values, expected.values)
def test_slice_locs_with_type_mismatch(self):
df = tm.makeTimeDataFrame()
stacked = df.stack()
idx = stacked.index
with pytest.raises(TypeError, match="^Level type mismatch"):
idx.slice_locs((1, 3))
with pytest.raises(TypeError, match="^Level type mismatch"):
idx.slice_locs(df.index[5] + timedelta(seconds=30), (5, 2))
df = tm.makeCustomDataframe(5, 5)
stacked = df.stack()
idx = stacked.index
with pytest.raises(TypeError, match="^Level type mismatch"):
idx.slice_locs(timedelta(seconds=30))
# TODO: Try creating a UnicodeDecodeError in exception message
with pytest.raises(TypeError, match="^Level type mismatch"):
idx.slice_locs(df.index[1], (16, "a"))
def test_slice_locs_not_sorted(self):
index = MultiIndex(
levels=[Index(np.arange(4)), Index(np.arange(4)), Index(np.arange(4))],
codes=[
np.array([0, 0, 1, 2, 2, 2, 3, 3]),
np.array([0, 1, 0, 0, 0, 1, 0, 1]),
np.array([1, 0, 1, 1, 0, 0, 1, 0]),
],
)
msg = "[Kk]ey length.*greater than MultiIndex lexsort depth"
with pytest.raises(KeyError, match=msg):
index.slice_locs((1, 0, 1), (2, 1, 0))
# works
sorted_index, _ = index.sortlevel(0)
# should there be a test case here???
sorted_index.slice_locs((1, 0, 1), (2, 1, 0))
def test_slice_locs_not_contained(self):
# some searchsorted action
index = MultiIndex(
levels=[[0, 2, 4, 6], [0, 2, 4]],
codes=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]],
)
result = index.slice_locs((1, 0), (5, 2))
assert result == (3, 6)
result = index.slice_locs(1, 5)
assert result == (3, 6)
result = index.slice_locs((2, 2), (5, 2))
assert result == (3, 6)
result = index.slice_locs(2, 5)
assert result == (3, 6)
result = index.slice_locs((1, 0), (6, 3))
assert result == (3, 8)
result = index.slice_locs(-1, 10)
assert result == (0, len(index))
@pytest.mark.parametrize(
"index_arr,expected,start_idx,end_idx",
[
([[np.nan, "a", "b"], ["c", "d", "e"]], (0, 3), np.nan, None),
([[np.nan, "a", "b"], ["c", "d", "e"]], (0, 3), np.nan, "b"),
([[np.nan, "a", "b"], ["c", "d", "e"]], (0, 3), np.nan, ("b", "e")),
([["a", "b", "c"], ["d", np.nan, "e"]], (1, 3), ("b", np.nan), None),
([["a", "b", "c"], ["d", np.nan, "e"]], (1, 3), ("b", np.nan), "c"),
([["a", "b", "c"], ["d", np.nan, "e"]], (1, 3), ("b", np.nan), ("c", "e")),
],
)
def test_slice_locs_with_missing_value(
self, index_arr, expected, start_idx, end_idx
):
# issue 19132
idx = MultiIndex.from_arrays(index_arr)
result = idx.slice_locs(start=start_idx, end=end_idx)
assert result == expected
class TestPutmask:
def test_putmask_with_wrong_mask(self, idx):
# GH18368
msg = "putmask: mask and data must be the same size"
with pytest.raises(ValueError, match=msg):
idx.putmask(np.ones(len(idx) + 1, np.bool_), 1)
with pytest.raises(ValueError, match=msg):
idx.putmask(np.ones(len(idx) - 1, np.bool_), 1)
with pytest.raises(ValueError, match=msg):
idx.putmask("foo", 1)
def test_putmask_multiindex_other(self):
# GH#43212 `value` is also a MultiIndex
left = MultiIndex.from_tuples([(np.nan, 6), (np.nan, 6), ("a", 4)])
right = MultiIndex.from_tuples([("a", 1), ("a", 1), ("d", 1)])
mask = np.array([True, True, False])
result = left.putmask(mask, right)
expected = MultiIndex.from_tuples([right[0], right[1], left[2]])
tm.assert_index_equal(result, expected)
def test_putmask_keep_dtype(self, any_numeric_ea_dtype):
# GH#49830
midx = MultiIndex.from_arrays(
[pd.Series([1, 2, 3], dtype=any_numeric_ea_dtype), [10, 11, 12]]
)
midx2 = MultiIndex.from_arrays(
[pd.Series([5, 6, 7], dtype=any_numeric_ea_dtype), [-1, -2, -3]]
)
result = midx.putmask([True, False, False], midx2)
expected = MultiIndex.from_arrays(
[pd.Series([5, 2, 3], dtype=any_numeric_ea_dtype), [-1, 11, 12]]
)
tm.assert_index_equal(result, expected)
def test_putmask_keep_dtype_shorter_value(self, any_numeric_ea_dtype):
# GH#49830
midx = MultiIndex.from_arrays(
[pd.Series([1, 2, 3], dtype=any_numeric_ea_dtype), [10, 11, 12]]
)
midx2 = MultiIndex.from_arrays(
[pd.Series([5], dtype=any_numeric_ea_dtype), [-1]]
)
result = midx.putmask([True, False, False], midx2)
expected = MultiIndex.from_arrays(
[pd.Series([5, 2, 3], dtype=any_numeric_ea_dtype), [-1, 11, 12]]
)
tm.assert_index_equal(result, expected)
class TestGetIndexer:
def test_get_indexer(self):
major_axis = Index(np.arange(4))
minor_axis = Index(np.arange(2))
major_codes = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp)
minor_codes = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp)
index = MultiIndex(
levels=[major_axis, minor_axis], codes=[major_codes, minor_codes]
)
idx1 = index[:5]
idx2 = index[[1, 3, 5]]
r1 = idx1.get_indexer(idx2)
tm.assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp))
r1 = idx2.get_indexer(idx1, method="pad")
e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp)
tm.assert_almost_equal(r1, e1)
r2 = idx2.get_indexer(idx1[::-1], method="pad")
tm.assert_almost_equal(r2, e1[::-1])
rffill1 = idx2.get_indexer(idx1, method="ffill")
tm.assert_almost_equal(r1, rffill1)
r1 = idx2.get_indexer(idx1, method="backfill")
e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp)
tm.assert_almost_equal(r1, e1)
r2 = idx2.get_indexer(idx1[::-1], method="backfill")
tm.assert_almost_equal(r2, e1[::-1])
rbfill1 = idx2.get_indexer(idx1, method="bfill")
tm.assert_almost_equal(r1, rbfill1)
# pass non-MultiIndex
r1 = idx1.get_indexer(idx2.values)
rexp1 = idx1.get_indexer(idx2)
tm.assert_almost_equal(r1, rexp1)
r1 = idx1.get_indexer([1, 2, 3])
assert (r1 == [-1, -1, -1]).all()
# create index with duplicates
idx1 = Index(list(range(10)) + list(range(10)))
idx2 = Index(list(range(20)))
msg = "Reindexing only valid with uniquely valued Index objects"
with pytest.raises(InvalidIndexError, match=msg):
idx1.get_indexer(idx2)
def test_get_indexer_nearest(self):
midx = MultiIndex.from_tuples([("a", 1), ("b", 2)])
msg = (
"method='nearest' not implemented yet for MultiIndex; "
"see GitHub issue 9365"
)
with pytest.raises(NotImplementedError, match=msg):
midx.get_indexer(["a"], method="nearest")
msg = "tolerance not implemented yet for MultiIndex"
with pytest.raises(NotImplementedError, match=msg):
midx.get_indexer(["a"], method="pad", tolerance=2)
def test_get_indexer_categorical_time(self):
# https://github.com/pandas-dev/pandas/issues/21390
midx = MultiIndex.from_product(
[
Categorical(["a", "b", "c"]),
Categorical(date_range("2012-01-01", periods=3, freq="H")),
]
)
result = midx.get_indexer(midx)
tm.assert_numpy_array_equal(result, np.arange(9, dtype=np.intp))
@pytest.mark.parametrize(
"index_arr,labels,expected",
[
(
[[1, np.nan, 2], [3, 4, 5]],
[1, np.nan, 2],
np.array([-1, -1, -1], dtype=np.intp),
),
([[1, np.nan, 2], [3, 4, 5]], [(np.nan, 4)], np.array([1], dtype=np.intp)),
([[1, 2, 3], [np.nan, 4, 5]], [(1, np.nan)], np.array([0], dtype=np.intp)),
(
[[1, 2, 3], [np.nan, 4, 5]],
[np.nan, 4, 5],
np.array([-1, -1, -1], dtype=np.intp),
),
],
)
def test_get_indexer_with_missing_value(self, index_arr, labels, expected):
# issue 19132
idx = MultiIndex.from_arrays(index_arr)
result = idx.get_indexer(labels)
tm.assert_numpy_array_equal(result, expected)
def test_get_indexer_methods(self):
# https://github.com/pandas-dev/pandas/issues/29896
# test getting an indexer for another index with different methods
# confirms that getting an indexer without a filling method, getting an
# indexer and backfilling, and getting an indexer and padding all behave
# correctly in the case where all of the target values fall in between
# several levels in the MultiIndex into which they are getting an indexer
#
# visually, the MultiIndexes used in this test are:
# mult_idx_1:
# 0: -1 0
# 1: 2
# 2: 3
# 3: 4
# 4: 0 0
# 5: 2
# 6: 3
# 7: 4
# 8: 1 0
# 9: 2
# 10: 3
# 11: 4
#
# mult_idx_2:
# 0: 0 1
# 1: 3
# 2: 4
mult_idx_1 = MultiIndex.from_product([[-1, 0, 1], [0, 2, 3, 4]])
mult_idx_2 = MultiIndex.from_product([[0], [1, 3, 4]])
indexer = mult_idx_1.get_indexer(mult_idx_2)
expected = np.array([-1, 6, 7], dtype=indexer.dtype)
tm.assert_almost_equal(expected, indexer)
backfill_indexer = mult_idx_1.get_indexer(mult_idx_2, method="backfill")
expected = np.array([5, 6, 7], dtype=backfill_indexer.dtype)
tm.assert_almost_equal(expected, backfill_indexer)
# ensure the legacy "bfill" option functions identically to "backfill"
backfill_indexer = mult_idx_1.get_indexer(mult_idx_2, method="bfill")
expected = np.array([5, 6, 7], dtype=backfill_indexer.dtype)
tm.assert_almost_equal(expected, backfill_indexer)
pad_indexer = mult_idx_1.get_indexer(mult_idx_2, method="pad")
expected = np.array([4, 6, 7], dtype=pad_indexer.dtype)
tm.assert_almost_equal(expected, pad_indexer)
# ensure the legacy "ffill" option functions identically to "pad"
pad_indexer = mult_idx_1.get_indexer(mult_idx_2, method="ffill")
expected = np.array([4, 6, 7], dtype=pad_indexer.dtype)
tm.assert_almost_equal(expected, pad_indexer)
def test_get_indexer_three_or_more_levels(self):
# https://github.com/pandas-dev/pandas/issues/29896
# tests get_indexer() on MultiIndexes with 3+ levels
# visually, these are
# mult_idx_1:
# 0: 1 2 5
# 1: 7
# 2: 4 5
# 3: 7
# 4: 6 5
# 5: 7
# 6: 3 2 5
# 7: 7
# 8: 4 5
# 9: 7
# 10: 6 5
# 11: 7
#
# mult_idx_2:
# 0: 1 1 8
# 1: 1 5 9
# 2: 1 6 7
# 3: 2 1 6
# 4: 2 7 6
# 5: 2 7 8
# 6: 3 6 8
mult_idx_1 = MultiIndex.from_product([[1, 3], [2, 4, 6], [5, 7]])
mult_idx_2 = MultiIndex.from_tuples(
[
(1, 1, 8),
(1, 5, 9),
(1, 6, 7),
(2, 1, 6),
(2, 7, 7),
(2, 7, 8),
(3, 6, 8),
]
)
# sanity check
assert mult_idx_1.is_monotonic_increasing
assert mult_idx_1.is_unique
assert mult_idx_2.is_monotonic_increasing
assert mult_idx_2.is_unique
# show the relationships between the two
assert mult_idx_2[0] < mult_idx_1[0]
assert mult_idx_1[3] < mult_idx_2[1] < mult_idx_1[4]
assert mult_idx_1[5] == mult_idx_2[2]
assert mult_idx_1[5] < mult_idx_2[3] < mult_idx_1[6]
assert mult_idx_1[5] < mult_idx_2[4] < mult_idx_1[6]
assert mult_idx_1[5] < mult_idx_2[5] < mult_idx_1[6]
assert mult_idx_1[-1] < mult_idx_2[6]
indexer_no_fill = mult_idx_1.get_indexer(mult_idx_2)
expected = np.array([-1, -1, 5, -1, -1, -1, -1], dtype=indexer_no_fill.dtype)
tm.assert_almost_equal(expected, indexer_no_fill)
# test with backfilling
indexer_backfilled = mult_idx_1.get_indexer(mult_idx_2, method="backfill")
expected = np.array([0, 4, 5, 6, 6, 6, -1], dtype=indexer_backfilled.dtype)
tm.assert_almost_equal(expected, indexer_backfilled)
# now, the same thing, but forward-filled (aka "padded")
indexer_padded = mult_idx_1.get_indexer(mult_idx_2, method="pad")
expected = np.array([-1, 3, 5, 5, 5, 5, 11], dtype=indexer_padded.dtype)
tm.assert_almost_equal(expected, indexer_padded)
# now, do the indexing in the other direction
assert mult_idx_2[0] < mult_idx_1[0] < mult_idx_2[1]
assert mult_idx_2[0] < mult_idx_1[1] < mult_idx_2[1]
assert mult_idx_2[0] < mult_idx_1[2] < mult_idx_2[1]
assert mult_idx_2[0] < mult_idx_1[3] < mult_idx_2[1]
assert mult_idx_2[1] < mult_idx_1[4] < mult_idx_2[2]
assert mult_idx_2[2] == mult_idx_1[5]
assert mult_idx_2[5] < mult_idx_1[6] < mult_idx_2[6]
assert mult_idx_2[5] < mult_idx_1[7] < mult_idx_2[6]
assert mult_idx_2[5] < mult_idx_1[8] < mult_idx_2[6]
assert mult_idx_2[5] < mult_idx_1[9] < mult_idx_2[6]
assert mult_idx_2[5] < mult_idx_1[10] < mult_idx_2[6]
assert mult_idx_2[5] < mult_idx_1[11] < mult_idx_2[6]
indexer = mult_idx_2.get_indexer(mult_idx_1)
expected = np.array(
[-1, -1, -1, -1, -1, 2, -1, -1, -1, -1, -1, -1], dtype=indexer.dtype
)
tm.assert_almost_equal(expected, indexer)
backfill_indexer = mult_idx_2.get_indexer(mult_idx_1, method="bfill")
expected = np.array(
[1, 1, 1, 1, 2, 2, 6, 6, 6, 6, 6, 6], dtype=backfill_indexer.dtype
)
tm.assert_almost_equal(expected, backfill_indexer)
pad_indexer = mult_idx_2.get_indexer(mult_idx_1, method="pad")
expected = np.array(
[0, 0, 0, 0, 1, 2, 5, 5, 5, 5, 5, 5], dtype=pad_indexer.dtype
)
tm.assert_almost_equal(expected, pad_indexer)
def test_get_indexer_crossing_levels(self):
# https://github.com/pandas-dev/pandas/issues/29896
# tests a corner case with get_indexer() with MultiIndexes where, when we
# need to "carry" across levels, proper tuple ordering is respected
#
# the MultiIndexes used in this test, visually, are:
# mult_idx_1:
# 0: 1 1 1 1
# 1: 2
# 2: 2 1
# 3: 2
# 4: 1 2 1 1
# 5: 2
# 6: 2 1
# 7: 2
# 8: 2 1 1 1
# 9: 2
# 10: 2 1
# 11: 2
# 12: 2 2 1 1
# 13: 2
# 14: 2 1
# 15: 2
#
# mult_idx_2:
# 0: 1 3 2 2
# 1: 2 3 2 2
mult_idx_1 = MultiIndex.from_product([[1, 2]] * 4)
mult_idx_2 = MultiIndex.from_tuples([(1, 3, 2, 2), (2, 3, 2, 2)])
# show the tuple orderings, which get_indexer() should respect
assert mult_idx_1[7] < mult_idx_2[0] < mult_idx_1[8]
assert mult_idx_1[-1] < mult_idx_2[1]
indexer = mult_idx_1.get_indexer(mult_idx_2)
expected = np.array([-1, -1], dtype=indexer.dtype)
tm.assert_almost_equal(expected, indexer)
backfill_indexer = mult_idx_1.get_indexer(mult_idx_2, method="bfill")
expected = np.array([8, -1], dtype=backfill_indexer.dtype)
tm.assert_almost_equal(expected, backfill_indexer)
pad_indexer = mult_idx_1.get_indexer(mult_idx_2, method="ffill")
expected = np.array([7, 15], dtype=pad_indexer.dtype)
tm.assert_almost_equal(expected, pad_indexer)
def test_get_indexer_kwarg_validation(self):
# GH#41918
mi = MultiIndex.from_product([range(3), ["A", "B"]])
msg = "limit argument only valid if doing pad, backfill or nearest"
with pytest.raises(ValueError, match=msg):
mi.get_indexer(mi[:-1], limit=4)
msg = "tolerance argument only valid if doing pad, backfill or nearest"
with pytest.raises(ValueError, match=msg):
mi.get_indexer(mi[:-1], tolerance="piano")
def test_get_indexer_nan(self):
# GH#37222
idx1 = MultiIndex.from_product([["A"], [1.0, 2.0]], names=["id1", "id2"])
idx2 = MultiIndex.from_product([["A"], [np.nan, 2.0]], names=["id1", "id2"])
expected = np.array([-1, 1])
result = idx2.get_indexer(idx1)
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
result = idx1.get_indexer(idx2)
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
def test_getitem(idx):
# scalar
assert idx[2] == ("bar", "one")
# slice
result = idx[2:5]
expected = idx[[2, 3, 4]]
assert result.equals(expected)
# boolean
result = idx[[True, False, True, False, True, True]]
result2 = idx[np.array([True, False, True, False, True, True])]
expected = idx[[0, 2, 4, 5]]
assert result.equals(expected)
assert result2.equals(expected)
def test_getitem_group_select(idx):
sorted_idx, _ = idx.sortlevel(0)
assert sorted_idx.get_loc("baz") == slice(3, 4)
assert sorted_idx.get_loc("foo") == slice(0, 2)
@pytest.mark.parametrize("ind1", [[True] * 5, Index([True] * 5)])
@pytest.mark.parametrize(
"ind2",
[[True, False, True, False, False], Index([True, False, True, False, False])],
)
def test_getitem_bool_index_all(ind1, ind2):
# GH#22533
idx = MultiIndex.from_tuples([(10, 1), (20, 2), (30, 3), (40, 4), (50, 5)])
tm.assert_index_equal(idx[ind1], idx)
expected = MultiIndex.from_tuples([(10, 1), (30, 3)])
tm.assert_index_equal(idx[ind2], expected)
@pytest.mark.parametrize("ind1", [[True], Index([True])])
@pytest.mark.parametrize("ind2", [[False], Index([False])])
def test_getitem_bool_index_single(ind1, ind2):
# GH#22533
idx = MultiIndex.from_tuples([(10, 1)])
tm.assert_index_equal(idx[ind1], idx)
expected = MultiIndex(
levels=[np.array([], dtype=np.int64), np.array([], dtype=np.int64)],
codes=[[], []],
)
tm.assert_index_equal(idx[ind2], expected)
class TestGetLoc:
def test_get_loc(self, idx):
assert idx.get_loc(("foo", "two")) == 1
assert idx.get_loc(("baz", "two")) == 3
with pytest.raises(KeyError, match=r"^15$"):
idx.get_loc(("bar", "two"))
with pytest.raises(KeyError, match=r"^'quux'$"):
idx.get_loc("quux")
# 3 levels
index = MultiIndex(
levels=[Index(np.arange(4)), Index(np.arange(4)), Index(np.arange(4))],
codes=[
np.array([0, 0, 1, 2, 2, 2, 3, 3]),
np.array([0, 1, 0, 0, 0, 1, 0, 1]),
np.array([1, 0, 1, 1, 0, 0, 1, 0]),
],
)
with pytest.raises(KeyError, match=r"^\(1, 1\)$"):
index.get_loc((1, 1))
assert index.get_loc((2, 0)) == slice(3, 5)
def test_get_loc_duplicates(self):
index = Index([2, 2, 2, 2])
result = index.get_loc(2)
expected = slice(0, 4)
assert result == expected
index = Index(["c", "a", "a", "b", "b"])
rs = index.get_loc("c")
xp = 0
assert rs == xp
with pytest.raises(KeyError, match="2"):
index.get_loc(2)
def test_get_loc_level(self):
index = MultiIndex(
levels=[Index(np.arange(4)), Index(np.arange(4)), Index(np.arange(4))],
codes=[
np.array([0, 0, 1, 2, 2, 2, 3, 3]),
np.array([0, 1, 0, 0, 0, 1, 0, 1]),
np.array([1, 0, 1, 1, 0, 0, 1, 0]),
],
)
loc, new_index = index.get_loc_level((0, 1))
expected = slice(1, 2)
exp_index = index[expected].droplevel(0).droplevel(0)
assert loc == expected
assert new_index.equals(exp_index)
loc, new_index = index.get_loc_level((0, 1, 0))
expected = 1
assert loc == expected
assert new_index is None
with pytest.raises(KeyError, match=r"^\(2, 2\)$"):
index.get_loc_level((2, 2))
# GH 22221: unused label
with pytest.raises(KeyError, match=r"^2$"):
index.drop(2).get_loc_level(2)
# Unused label on unsorted level:
with pytest.raises(KeyError, match=r"^2$"):
index.drop(1, level=2).get_loc_level(2, level=2)
index = MultiIndex(
levels=[[2000], list(range(4))],
codes=[np.array([0, 0, 0, 0]), np.array([0, 1, 2, 3])],
)
result, new_index = index.get_loc_level((2000, slice(None, None)))
expected = slice(None, None)
assert result == expected
assert new_index.equals(index.droplevel(0))
@pytest.mark.parametrize("dtype1", [int, float, bool, str])
@pytest.mark.parametrize("dtype2", [int, float, bool, str])
def test_get_loc_multiple_dtypes(self, dtype1, dtype2):
# GH 18520
levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)]
idx = MultiIndex.from_product(levels)
assert idx.get_loc(idx[2]) == 2
@pytest.mark.parametrize("level", [0, 1])
@pytest.mark.parametrize("dtypes", [[int, float], [float, int]])
def test_get_loc_implicit_cast(self, level, dtypes):
# GH 18818, GH 15994 : as flat index, cast int to float and vice-versa
levels = [["a", "b"], ["c", "d"]]
key = ["b", "d"]
lev_dtype, key_dtype = dtypes
levels[level] = np.array([0, 1], dtype=lev_dtype)
key[level] = key_dtype(1)
idx = MultiIndex.from_product(levels)
assert idx.get_loc(tuple(key)) == 3
@pytest.mark.parametrize("dtype", [bool, object])
def test_get_loc_cast_bool(self, dtype):
# GH 19086 : int is casted to bool, but not vice-versa (for object dtype)
# With bool dtype, we don't cast in either direction.
levels = [Index([False, True], dtype=dtype), np.arange(2, dtype="int64")]
idx = MultiIndex.from_product(levels)
if dtype is bool:
with pytest.raises(KeyError, match=r"^\(0, 1\)$"):
assert idx.get_loc((0, 1)) == 1
with pytest.raises(KeyError, match=r"^\(1, 0\)$"):
assert idx.get_loc((1, 0)) == 2
else:
# We use python object comparisons, which treat 0 == False and 1 == True
assert idx.get_loc((0, 1)) == 1
assert idx.get_loc((1, 0)) == 2
with pytest.raises(KeyError, match=r"^\(False, True\)$"):
idx.get_loc((False, True))
with pytest.raises(KeyError, match=r"^\(True, False\)$"):
idx.get_loc((True, False))
@pytest.mark.parametrize("level", [0, 1])
def test_get_loc_nan(self, level, nulls_fixture):
# GH 18485 : NaN in MultiIndex
levels = [["a", "b"], ["c", "d"]]
key = ["b", "d"]
levels[level] = np.array([0, nulls_fixture], dtype=type(nulls_fixture))
key[level] = nulls_fixture
idx = MultiIndex.from_product(levels)
assert idx.get_loc(tuple(key)) == 3
def test_get_loc_missing_nan(self):
# GH 8569
idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]])
assert isinstance(idx.get_loc(1), slice)
with pytest.raises(KeyError, match=r"^3$"):
idx.get_loc(3)
with pytest.raises(KeyError, match=r"^nan$"):
idx.get_loc(np.nan)
with pytest.raises(InvalidIndexError, match=r"\[nan\]"):
# listlike/non-hashable raises TypeError
idx.get_loc([np.nan])
def test_get_loc_with_values_including_missing_values(self):
# issue 19132
idx = MultiIndex.from_product([[np.nan, 1]] * 2)
expected = slice(0, 2, None)
assert idx.get_loc(np.nan) == expected
idx = MultiIndex.from_arrays([[np.nan, 1, 2, np.nan]])
expected = np.array([True, False, False, True])
tm.assert_numpy_array_equal(idx.get_loc(np.nan), expected)
idx = MultiIndex.from_product([[np.nan, 1]] * 3)
expected = slice(2, 4, None)
assert idx.get_loc((np.nan, 1)) == expected
def test_get_loc_duplicates2(self):
# TODO: de-duplicate with test_get_loc_duplicates above?
index = MultiIndex(
levels=[["D", "B", "C"], [0, 26, 27, 37, 57, 67, 75, 82]],
codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]],
names=["tag", "day"],
)
assert index.get_loc("D") == slice(0, 3)
def test_get_loc_past_lexsort_depth(self):
# GH#30053
idx = MultiIndex(
levels=[["a"], [0, 7], [1]],
codes=[[0, 0], [1, 0], [0, 0]],
names=["x", "y", "z"],
sortorder=0,
)
key = ("a", 7)
with tm.assert_produces_warning(PerformanceWarning):
# PerformanceWarning: indexing past lexsort depth may impact performance
result = idx.get_loc(key)
assert result == slice(0, 1, None)
def test_multiindex_get_loc_list_raises(self):
# GH#35878
idx = MultiIndex.from_tuples([("a", 1), ("b", 2)])
msg = r"\[\]"
with pytest.raises(InvalidIndexError, match=msg):
idx.get_loc([])
def test_get_loc_nested_tuple_raises_keyerror(self):
# raise KeyError, not TypeError
mi = MultiIndex.from_product([range(3), range(4), range(5), range(6)])
key = ((2, 3, 4), "foo")
with pytest.raises(KeyError, match=re.escape(str(key))):
mi.get_loc(key)
class TestWhere:
def test_where(self):
i = MultiIndex.from_tuples([("A", 1), ("A", 2)])
msg = r"\.where is not supported for MultiIndex operations"
with pytest.raises(NotImplementedError, match=msg):
i.where(True)
def test_where_array_like(self, listlike_box):
mi = MultiIndex.from_tuples([("A", 1), ("A", 2)])
cond = [False, True]
msg = r"\.where is not supported for MultiIndex operations"
with pytest.raises(NotImplementedError, match=msg):
mi.where(listlike_box(cond))
class TestContains:
def test_contains_top_level(self):
midx = MultiIndex.from_product([["A", "B"], [1, 2]])
assert "A" in midx
assert "A" not in midx._engine
def test_contains_with_nat(self):
# MI with a NaT
mi = MultiIndex(
levels=[["C"], date_range("2012-01-01", periods=5)],
codes=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]],
names=[None, "B"],
)
assert ("C", pd.Timestamp("2012-01-01")) in mi
for val in mi.values:
assert val in mi
def test_contains(self, idx):
assert ("foo", "two") in idx
assert ("bar", "two") not in idx
assert None not in idx
def test_contains_with_missing_value(self):
# GH#19132
idx = MultiIndex.from_arrays([[1, np.nan, 2]])
assert np.nan in idx
idx = MultiIndex.from_arrays([[1, 2], [np.nan, 3]])
assert np.nan not in idx
assert (1, np.nan) in idx
def test_multiindex_contains_dropped(self):
# GH#19027
# test that dropped MultiIndex levels are not in the MultiIndex
# despite continuing to be in the MultiIndex's levels
idx = MultiIndex.from_product([[1, 2], [3, 4]])
assert 2 in idx
idx = idx.drop(2)
# drop implementation keeps 2 in the levels
assert 2 in idx.levels[0]
# but it should no longer be in the index itself
assert 2 not in idx
# also applies to strings
idx = MultiIndex.from_product([["a", "b"], ["c", "d"]])
assert "a" in idx
idx = idx.drop("a")
assert "a" in idx.levels[0]
assert "a" not in idx
def test_contains_td64_level(self):
# GH#24570
tx = pd.timedelta_range("09:30:00", "16:00:00", freq="30 min")
idx = MultiIndex.from_arrays([tx, np.arange(len(tx))])
assert tx[0] in idx
assert "element_not_exit" not in idx
assert "0 day 09:30:00" in idx
@pytest.mark.slow
def test_large_mi_contains(self):
# GH#10645
result = MultiIndex.from_arrays([range(10**6), range(10**6)])
assert (10**6, 0) not in result
def test_timestamp_multiindex_indexer():
# https://github.com/pandas-dev/pandas/issues/26944
idx = MultiIndex.from_product(
[
date_range("2019-01-01T00:15:33", periods=100, freq="H", name="date"),
["x"],
[3],
]
)
df = pd.DataFrame({"foo": np.arange(len(idx))}, idx)
result = df.loc[pd.IndexSlice["2019-1-2":, "x", :], "foo"]
qidx = MultiIndex.from_product(
[
date_range(
start="2019-01-02T00:15:33",
end="2019-01-05T03:15:33",
freq="H",
name="date",
),
["x"],
[3],
]
)
should_be = pd.Series(data=np.arange(24, len(qidx) + 24), index=qidx, name="foo")
tm.assert_series_equal(result, should_be)
@pytest.mark.parametrize(
"index_arr,expected,target,algo",
[
([[np.nan, "a", "b"], ["c", "d", "e"]], 0, np.nan, "left"),
([[np.nan, "a", "b"], ["c", "d", "e"]], 1, (np.nan, "c"), "right"),
([["a", "b", "c"], ["d", np.nan, "d"]], 1, ("b", np.nan), "left"),
],
)
def test_get_slice_bound_with_missing_value(index_arr, expected, target, algo):
# issue 19132
idx = MultiIndex.from_arrays(index_arr)
result = idx.get_slice_bound(target, side=algo)
assert result == expected
@pytest.mark.parametrize(
"index_arr,expected,start_idx,end_idx",
[
([[np.nan, 1, 2], [3, 4, 5]], slice(0, 2, None), np.nan, 1),
([[np.nan, 1, 2], [3, 4, 5]], slice(0, 3, None), np.nan, (2, 5)),
([[1, 2, 3], [4, np.nan, 5]], slice(1, 3, None), (2, np.nan), 3),
([[1, 2, 3], [4, np.nan, 5]], slice(1, 3, None), (2, np.nan), (3, 5)),
],
)
def test_slice_indexer_with_missing_value(index_arr, expected, start_idx, end_idx):
# issue 19132
idx = MultiIndex.from_arrays(index_arr)
result = idx.slice_indexer(start=start_idx, end=end_idx)
assert result == expected
def test_pyint_engine():
# GH#18519 : when combinations of codes cannot be represented in 64
# bits, the index underlying the MultiIndex engine works with Python
# integers, rather than uint64.
N = 5
keys = [
tuple(arr)
for arr in [
[0] * 10 * N,
[1] * 10 * N,
[2] * 10 * N,
[np.nan] * N + [2] * 9 * N,
[0] * N + [2] * 9 * N,
[np.nan] * N + [2] * 8 * N + [0] * N,
]
]
# Each level contains 4 elements (including NaN), so it is represented
# in 2 bits, for a total of 2*N*10 = 100 > 64 bits. If we were using a
# 64 bit engine and truncating the first levels, the fourth and fifth
# keys would collide; if truncating the last levels, the fifth and
# sixth; if rotating bits rather than shifting, the third and fifth.
for idx, key_value in enumerate(keys):
index = MultiIndex.from_tuples(keys)
assert index.get_loc(key_value) == idx
expected = np.arange(idx + 1, dtype=np.intp)
result = index.get_indexer([keys[i] for i in expected])
tm.assert_numpy_array_equal(result, expected)
# With missing key:
idces = range(len(keys))
expected = np.array([-1] + list(idces), dtype=np.intp)
missing = tuple([0, 1] * 5 * N)
result = index.get_indexer([missing] + [keys[i] for i in idces])
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize(
"keys,expected",
[
((slice(None), [5, 4]), [1, 0]),
((slice(None), [4, 5]), [0, 1]),
(([True, False, True], [4, 6]), [0, 2]),
(([True, False, True], [6, 4]), [0, 2]),
((2, [4, 5]), [0, 1]),
((2, [5, 4]), [1, 0]),
(([2], [4, 5]), [0, 1]),
(([2], [5, 4]), [1, 0]),
],
)
def test_get_locs_reordering(keys, expected):
# GH48384
idx = MultiIndex.from_arrays(
[
[2, 2, 1],
[4, 5, 6],
]
)
result = idx.get_locs(keys)
expected = np.array(expected, dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
def test_get_indexer_for_multiindex_with_nans(nulls_fixture):
# GH37222
idx1 = MultiIndex.from_product([["A"], [1.0, 2.0]], names=["id1", "id2"])
idx2 = MultiIndex.from_product([["A"], [nulls_fixture, 2.0]], names=["id1", "id2"])
result = idx2.get_indexer(idx1)
expected = np.array([-1, 1], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
result = idx1.get_indexer(idx2)
expected = np.array([-1, 1], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)