Inzynierka/Lib/site-packages/pandas/tests/indexes/multi/test_partial_indexing.py
2023-06-02 12:51:02 +02:00

149 lines
4.7 KiB
Python

import numpy as np
import pytest
from pandas import (
DataFrame,
IndexSlice,
MultiIndex,
date_range,
)
import pandas._testing as tm
@pytest.fixture
def df():
# c1
# 2016-01-01 00:00:00 a 0
# b 1
# c 2
# 2016-01-01 12:00:00 a 3
# b 4
# c 5
# 2016-01-02 00:00:00 a 6
# b 7
# c 8
# 2016-01-02 12:00:00 a 9
# b 10
# c 11
# 2016-01-03 00:00:00 a 12
# b 13
# c 14
dr = date_range("2016-01-01", "2016-01-03", freq="12H")
abc = ["a", "b", "c"]
mi = MultiIndex.from_product([dr, abc])
frame = DataFrame({"c1": range(0, 15)}, index=mi)
return frame
def test_partial_string_matching_single_index(df):
# partial string matching on a single index
for df_swap in [df.swaplevel(), df.swaplevel(0), df.swaplevel(0, 1)]:
df_swap = df_swap.sort_index()
just_a = df_swap.loc["a"]
result = just_a.loc["2016-01-01"]
expected = df.loc[IndexSlice[:, "a"], :].iloc[0:2]
expected.index = expected.index.droplevel(1)
tm.assert_frame_equal(result, expected)
def test_get_loc_partial_timestamp_multiindex(df):
mi = df.index
key = ("2016-01-01", "a")
loc = mi.get_loc(key)
expected = np.zeros(len(mi), dtype=bool)
expected[[0, 3]] = True
tm.assert_numpy_array_equal(loc, expected)
key2 = ("2016-01-02", "a")
loc2 = mi.get_loc(key2)
expected2 = np.zeros(len(mi), dtype=bool)
expected2[[6, 9]] = True
tm.assert_numpy_array_equal(loc2, expected2)
key3 = ("2016-01", "a")
loc3 = mi.get_loc(key3)
expected3 = np.zeros(len(mi), dtype=bool)
expected3[mi.get_level_values(1).get_loc("a")] = True
tm.assert_numpy_array_equal(loc3, expected3)
key4 = ("2016", "a")
loc4 = mi.get_loc(key4)
expected4 = expected3
tm.assert_numpy_array_equal(loc4, expected4)
# non-monotonic
taker = np.arange(len(mi), dtype=np.intp)
taker[::2] = taker[::-2]
mi2 = mi.take(taker)
loc5 = mi2.get_loc(key)
expected5 = np.zeros(len(mi2), dtype=bool)
expected5[[3, 14]] = True
tm.assert_numpy_array_equal(loc5, expected5)
def test_partial_string_timestamp_multiindex(df):
# GH10331
df_swap = df.swaplevel(0, 1).sort_index()
SLC = IndexSlice
# indexing with IndexSlice
result = df.loc[SLC["2016-01-01":"2016-02-01", :], :]
expected = df
tm.assert_frame_equal(result, expected)
# match on secondary index
result = df_swap.loc[SLC[:, "2016-01-01":"2016-01-01"], :]
expected = df_swap.iloc[[0, 1, 5, 6, 10, 11]]
tm.assert_frame_equal(result, expected)
# partial string match on year only
result = df.loc["2016"]
expected = df
tm.assert_frame_equal(result, expected)
# partial string match on date
result = df.loc["2016-01-01"]
expected = df.iloc[0:6]
tm.assert_frame_equal(result, expected)
# partial string match on date and hour, from middle
result = df.loc["2016-01-02 12"]
# hourly resolution, same as index.levels[0], so we are _not_ slicing on
# that level, so that level gets dropped
expected = df.iloc[9:12].droplevel(0)
tm.assert_frame_equal(result, expected)
# partial string match on secondary index
result = df_swap.loc[SLC[:, "2016-01-02"], :]
expected = df_swap.iloc[[2, 3, 7, 8, 12, 13]]
tm.assert_frame_equal(result, expected)
# tuple selector with partial string match on date
# "2016-01-01" has daily resolution, so _is_ a slice on the first level.
result = df.loc[("2016-01-01", "a"), :]
expected = df.iloc[[0, 3]]
expected = df.iloc[[0, 3]].droplevel(1)
tm.assert_frame_equal(result, expected)
# Slicing date on first level should break (of course) bc the DTI is the
# second level on df_swap
with pytest.raises(KeyError, match="'2016-01-01'"):
df_swap.loc["2016-01-01"]
def test_partial_string_timestamp_multiindex_str_key_raises(df):
# Even though this syntax works on a single index, this is somewhat
# ambiguous and we don't want to extend this behavior forward to work
# in multi-indexes. This would amount to selecting a scalar from a
# column.
with pytest.raises(KeyError, match="'2016-01-01'"):
df["2016-01-01"]
def test_partial_string_timestamp_multiindex_daily_resolution(df):
# GH12685 (partial string with daily resolution or below)
result = df.loc[IndexSlice["2013-03":"2013-03", :], :]
expected = df.iloc[118:180]
tm.assert_frame_equal(result, expected)