192 lines
5.7 KiB
Python
192 lines
5.7 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from pandas import (
|
|
CategoricalIndex,
|
|
DatetimeIndex,
|
|
Index,
|
|
PeriodIndex,
|
|
TimedeltaIndex,
|
|
isna,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.api.types import (
|
|
is_complex_dtype,
|
|
is_numeric_dtype,
|
|
)
|
|
from pandas.core.arrays import BooleanArray
|
|
from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin
|
|
|
|
|
|
def test_numpy_ufuncs_out(index):
|
|
result = index == index
|
|
|
|
out = np.empty(index.shape, dtype=bool)
|
|
np.equal(index, index, out=out)
|
|
tm.assert_numpy_array_equal(out, result)
|
|
|
|
if not index._is_multi:
|
|
# same thing on the ExtensionArray
|
|
out = np.empty(index.shape, dtype=bool)
|
|
np.equal(index.array, index.array, out=out)
|
|
tm.assert_numpy_array_equal(out, result)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"func",
|
|
[
|
|
np.exp,
|
|
np.exp2,
|
|
np.expm1,
|
|
np.log,
|
|
np.log2,
|
|
np.log10,
|
|
np.log1p,
|
|
np.sqrt,
|
|
np.sin,
|
|
np.cos,
|
|
np.tan,
|
|
np.arcsin,
|
|
np.arccos,
|
|
np.arctan,
|
|
np.sinh,
|
|
np.cosh,
|
|
np.tanh,
|
|
np.arcsinh,
|
|
np.arccosh,
|
|
np.arctanh,
|
|
np.deg2rad,
|
|
np.rad2deg,
|
|
],
|
|
ids=lambda x: x.__name__,
|
|
)
|
|
def test_numpy_ufuncs_basic(index, func):
|
|
# test ufuncs of numpy, see:
|
|
# https://numpy.org/doc/stable/reference/ufuncs.html
|
|
|
|
if isinstance(index, DatetimeIndexOpsMixin):
|
|
with tm.external_error_raised((TypeError, AttributeError)):
|
|
with np.errstate(all="ignore"):
|
|
func(index)
|
|
elif is_numeric_dtype(index) and not (
|
|
is_complex_dtype(index) and func in [np.deg2rad, np.rad2deg]
|
|
):
|
|
# coerces to float (e.g. np.sin)
|
|
with np.errstate(all="ignore"):
|
|
result = func(index)
|
|
arr_result = func(index.values)
|
|
if arr_result.dtype == np.float16:
|
|
arr_result = arr_result.astype(np.float32)
|
|
exp = Index(arr_result, name=index.name)
|
|
|
|
tm.assert_index_equal(result, exp)
|
|
if isinstance(index.dtype, np.dtype) and is_numeric_dtype(index):
|
|
if is_complex_dtype(index):
|
|
assert result.dtype == index.dtype
|
|
elif index.dtype in ["bool", "int8", "uint8"]:
|
|
assert result.dtype in ["float16", "float32"]
|
|
elif index.dtype in ["int16", "uint16", "float32"]:
|
|
assert result.dtype == "float32"
|
|
else:
|
|
assert result.dtype == "float64"
|
|
else:
|
|
# e.g. np.exp with Int64 -> Float64
|
|
assert type(result) is Index
|
|
else:
|
|
# raise AttributeError or TypeError
|
|
if len(index) == 0:
|
|
pass
|
|
else:
|
|
with tm.external_error_raised((TypeError, AttributeError)):
|
|
with np.errstate(all="ignore"):
|
|
func(index)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"func", [np.isfinite, np.isinf, np.isnan, np.signbit], ids=lambda x: x.__name__
|
|
)
|
|
def test_numpy_ufuncs_other(index, func):
|
|
# test ufuncs of numpy, see:
|
|
# https://numpy.org/doc/stable/reference/ufuncs.html
|
|
if isinstance(index, (DatetimeIndex, TimedeltaIndex)):
|
|
if func in (np.isfinite, np.isinf, np.isnan):
|
|
# numpy 1.18 changed isinf and isnan to not raise on dt64/td64
|
|
result = func(index)
|
|
assert isinstance(result, np.ndarray)
|
|
|
|
out = np.empty(index.shape, dtype=bool)
|
|
func(index, out=out)
|
|
tm.assert_numpy_array_equal(out, result)
|
|
else:
|
|
with tm.external_error_raised(TypeError):
|
|
func(index)
|
|
|
|
elif isinstance(index, PeriodIndex):
|
|
with tm.external_error_raised(TypeError):
|
|
func(index)
|
|
|
|
elif is_numeric_dtype(index) and not (
|
|
is_complex_dtype(index) and func is np.signbit
|
|
):
|
|
# Results in bool array
|
|
result = func(index)
|
|
if not isinstance(index.dtype, np.dtype):
|
|
# e.g. Int64 we expect to get BooleanArray back
|
|
assert isinstance(result, BooleanArray)
|
|
else:
|
|
assert isinstance(result, np.ndarray)
|
|
|
|
out = np.empty(index.shape, dtype=bool)
|
|
func(index, out=out)
|
|
|
|
if not isinstance(index.dtype, np.dtype):
|
|
tm.assert_numpy_array_equal(out, result._data)
|
|
else:
|
|
tm.assert_numpy_array_equal(out, result)
|
|
|
|
else:
|
|
if len(index) == 0:
|
|
pass
|
|
else:
|
|
with tm.external_error_raised(TypeError):
|
|
func(index)
|
|
|
|
|
|
@pytest.mark.parametrize("func", [np.maximum, np.minimum])
|
|
def test_numpy_ufuncs_reductions(index, func, request):
|
|
# TODO: overlap with tests.series.test_ufunc.test_reductions
|
|
if len(index) == 0:
|
|
return
|
|
|
|
if isinstance(index, CategoricalIndex) and index.dtype.ordered is False:
|
|
with pytest.raises(TypeError, match="is not ordered for"):
|
|
func.reduce(index)
|
|
return
|
|
else:
|
|
result = func.reduce(index)
|
|
|
|
if func is np.maximum:
|
|
expected = index.max(skipna=False)
|
|
else:
|
|
expected = index.min(skipna=False)
|
|
# TODO: do we have cases both with and without NAs?
|
|
|
|
assert type(result) is type(expected)
|
|
if isna(result):
|
|
assert isna(expected)
|
|
else:
|
|
assert result == expected
|
|
|
|
|
|
@pytest.mark.parametrize("func", [np.bitwise_and, np.bitwise_or, np.bitwise_xor])
|
|
def test_numpy_ufuncs_bitwise(func):
|
|
# https://github.com/pandas-dev/pandas/issues/46769
|
|
idx1 = Index([1, 2, 3, 4], dtype="int64")
|
|
idx2 = Index([3, 4, 5, 6], dtype="int64")
|
|
|
|
with tm.assert_produces_warning(None):
|
|
result = func(idx1, idx2)
|
|
|
|
expected = Index(func(idx1.values, idx2.values))
|
|
tm.assert_index_equal(result, expected)
|