49 lines
1.3 KiB
Python
49 lines
1.3 KiB
Python
import numpy as np
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
Series,
|
|
period_range,
|
|
)
|
|
|
|
|
|
def test_iat(float_frame):
|
|
for i, row in enumerate(float_frame.index):
|
|
for j, col in enumerate(float_frame.columns):
|
|
result = float_frame.iat[i, j]
|
|
expected = float_frame.at[row, col]
|
|
assert result == expected
|
|
|
|
|
|
def test_iat_duplicate_columns():
|
|
# https://github.com/pandas-dev/pandas/issues/11754
|
|
df = DataFrame([[1, 2]], columns=["x", "x"])
|
|
assert df.iat[0, 0] == 1
|
|
|
|
|
|
def test_iat_getitem_series_with_period_index():
|
|
# GH#4390, iat incorrectly indexing
|
|
index = period_range("1/1/2001", periods=10)
|
|
ser = Series(np.random.randn(10), index=index)
|
|
expected = ser[index[0]]
|
|
result = ser.iat[0]
|
|
assert expected == result
|
|
|
|
|
|
def test_iat_setitem_item_cache_cleared(indexer_ial, using_copy_on_write):
|
|
# GH#45684
|
|
data = {"x": np.arange(8, dtype=np.int64), "y": np.int64(0)}
|
|
df = DataFrame(data).copy()
|
|
ser = df["y"]
|
|
|
|
# previously this iat setting would split the block and fail to clear
|
|
# the item_cache.
|
|
indexer_ial(df)[7, 0] = 9999
|
|
|
|
indexer_ial(df)[7, 1] = 1234
|
|
|
|
assert df.iat[7, 1] == 1234
|
|
if not using_copy_on_write:
|
|
assert ser.iloc[-1] == 1234
|
|
assert df.iloc[-1, -1] == 1234
|