Inzynierka/Lib/site-packages/pandas/tests/io/formats/test_info.py
2023-06-02 12:51:02 +02:00

504 lines
15 KiB
Python

from io import StringIO
import re
from string import ascii_uppercase as uppercase
import sys
import textwrap
import numpy as np
import pytest
from pandas.compat import (
IS64,
PYPY,
)
from pandas import (
CategoricalIndex,
DataFrame,
MultiIndex,
Series,
date_range,
option_context,
)
import pandas._testing as tm
@pytest.fixture
def duplicate_columns_frame():
"""Dataframe with duplicate column names."""
return DataFrame(np.random.randn(1500, 4), columns=["a", "a", "b", "b"])
def test_info_empty():
# GH #45494
df = DataFrame()
buf = StringIO()
df.info(buf=buf)
result = buf.getvalue()
expected = textwrap.dedent(
"""\
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 0 entries
Empty DataFrame\n"""
)
assert result == expected
def test_info_categorical_column_smoke_test():
n = 2500
df = DataFrame({"int64": np.random.randint(100, size=n)})
df["category"] = Series(
np.array(list("abcdefghij")).take(np.random.randint(0, 10, size=n))
).astype("category")
df.isna()
buf = StringIO()
df.info(buf=buf)
df2 = df[df["category"] == "d"]
buf = StringIO()
df2.info(buf=buf)
@pytest.mark.parametrize(
"fixture_func_name",
[
"int_frame",
"float_frame",
"datetime_frame",
"duplicate_columns_frame",
],
)
def test_info_smoke_test(fixture_func_name, request):
frame = request.getfixturevalue(fixture_func_name)
buf = StringIO()
frame.info(buf=buf)
result = buf.getvalue().splitlines()
assert len(result) > 10
@pytest.mark.parametrize(
"num_columns, max_info_columns, verbose",
[
(10, 100, True),
(10, 11, True),
(10, 10, True),
(10, 9, False),
(10, 1, False),
],
)
def test_info_default_verbose_selection(num_columns, max_info_columns, verbose):
frame = DataFrame(np.random.randn(5, num_columns))
with option_context("display.max_info_columns", max_info_columns):
io_default = StringIO()
frame.info(buf=io_default)
result = io_default.getvalue()
io_explicit = StringIO()
frame.info(buf=io_explicit, verbose=verbose)
expected = io_explicit.getvalue()
assert result == expected
def test_info_verbose_check_header_separator_body():
buf = StringIO()
size = 1001
start = 5
frame = DataFrame(np.random.randn(3, size))
frame.info(verbose=True, buf=buf)
res = buf.getvalue()
header = " # Column Dtype \n--- ------ ----- "
assert header in res
frame.info(verbose=True, buf=buf)
buf.seek(0)
lines = buf.readlines()
assert len(lines) > 0
for i, line in enumerate(lines):
if start <= i < start + size:
line_nr = f" {i - start} "
assert line.startswith(line_nr)
@pytest.mark.parametrize(
"size, header_exp, separator_exp, first_line_exp, last_line_exp",
[
(
4,
" # Column Non-Null Count Dtype ",
"--- ------ -------------- ----- ",
" 0 0 3 non-null float64",
" 3 3 3 non-null float64",
),
(
11,
" # Column Non-Null Count Dtype ",
"--- ------ -------------- ----- ",
" 0 0 3 non-null float64",
" 10 10 3 non-null float64",
),
(
101,
" # Column Non-Null Count Dtype ",
"--- ------ -------------- ----- ",
" 0 0 3 non-null float64",
" 100 100 3 non-null float64",
),
(
1001,
" # Column Non-Null Count Dtype ",
"--- ------ -------------- ----- ",
" 0 0 3 non-null float64",
" 1000 1000 3 non-null float64",
),
(
10001,
" # Column Non-Null Count Dtype ",
"--- ------ -------------- ----- ",
" 0 0 3 non-null float64",
" 10000 10000 3 non-null float64",
),
],
)
def test_info_verbose_with_counts_spacing(
size, header_exp, separator_exp, first_line_exp, last_line_exp
):
"""Test header column, spacer, first line and last line in verbose mode."""
frame = DataFrame(np.random.randn(3, size))
with StringIO() as buf:
frame.info(verbose=True, show_counts=True, buf=buf)
all_lines = buf.getvalue().splitlines()
# Here table would contain only header, separator and table lines
# dframe repr, index summary, memory usage and dtypes are excluded
table = all_lines[3:-2]
header, separator, first_line, *rest, last_line = table
assert header == header_exp
assert separator == separator_exp
assert first_line == first_line_exp
assert last_line == last_line_exp
def test_info_memory():
# https://github.com/pandas-dev/pandas/issues/21056
df = DataFrame({"a": Series([1, 2], dtype="i8")})
buf = StringIO()
df.info(buf=buf)
result = buf.getvalue()
bytes = float(df.memory_usage().sum())
expected = textwrap.dedent(
f"""\
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 0 to 1
Data columns (total 1 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 a 2 non-null int64
dtypes: int64(1)
memory usage: {bytes} bytes
"""
)
assert result == expected
def test_info_wide():
io = StringIO()
df = DataFrame(np.random.randn(5, 101))
df.info(buf=io)
io = StringIO()
df.info(buf=io, max_cols=101)
result = io.getvalue()
assert len(result.splitlines()) > 100
expected = result
with option_context("display.max_info_columns", 101):
io = StringIO()
df.info(buf=io)
result = io.getvalue()
assert result == expected
def test_info_duplicate_columns_shows_correct_dtypes():
# GH11761
io = StringIO()
frame = DataFrame([[1, 2.0]], columns=["a", "a"])
frame.info(buf=io)
lines = io.getvalue().splitlines(True)
assert " 0 a 1 non-null int64 \n" == lines[5]
assert " 1 a 1 non-null float64\n" == lines[6]
def test_info_shows_column_dtypes():
dtypes = [
"int64",
"float64",
"datetime64[ns]",
"timedelta64[ns]",
"complex128",
"object",
"bool",
]
data = {}
n = 10
for i, dtype in enumerate(dtypes):
data[i] = np.random.randint(2, size=n).astype(dtype)
df = DataFrame(data)
buf = StringIO()
df.info(buf=buf)
res = buf.getvalue()
header = (
" # Column Non-Null Count Dtype \n"
"--- ------ -------------- ----- "
)
assert header in res
for i, dtype in enumerate(dtypes):
name = f" {i:d} {i:d} {n:d} non-null {dtype}"
assert name in res
def test_info_max_cols():
df = DataFrame(np.random.randn(10, 5))
for len_, verbose in [(5, None), (5, False), (12, True)]:
# For verbose always ^ setting ^ summarize ^ full output
with option_context("max_info_columns", 4):
buf = StringIO()
df.info(buf=buf, verbose=verbose)
res = buf.getvalue()
assert len(res.strip().split("\n")) == len_
for len_, verbose in [(12, None), (5, False), (12, True)]:
# max_cols not exceeded
with option_context("max_info_columns", 5):
buf = StringIO()
df.info(buf=buf, verbose=verbose)
res = buf.getvalue()
assert len(res.strip().split("\n")) == len_
for len_, max_cols in [(12, 5), (5, 4)]:
# setting truncates
with option_context("max_info_columns", 4):
buf = StringIO()
df.info(buf=buf, max_cols=max_cols)
res = buf.getvalue()
assert len(res.strip().split("\n")) == len_
# setting wouldn't truncate
with option_context("max_info_columns", 5):
buf = StringIO()
df.info(buf=buf, max_cols=max_cols)
res = buf.getvalue()
assert len(res.strip().split("\n")) == len_
def test_info_memory_usage():
# Ensure memory usage is displayed, when asserted, on the last line
dtypes = [
"int64",
"float64",
"datetime64[ns]",
"timedelta64[ns]",
"complex128",
"object",
"bool",
]
data = {}
n = 10
for i, dtype in enumerate(dtypes):
data[i] = np.random.randint(2, size=n).astype(dtype)
df = DataFrame(data)
buf = StringIO()
# display memory usage case
df.info(buf=buf, memory_usage=True)
res = buf.getvalue().splitlines()
assert "memory usage: " in res[-1]
# do not display memory usage case
df.info(buf=buf, memory_usage=False)
res = buf.getvalue().splitlines()
assert "memory usage: " not in res[-1]
df.info(buf=buf, memory_usage=True)
res = buf.getvalue().splitlines()
# memory usage is a lower bound, so print it as XYZ+ MB
assert re.match(r"memory usage: [^+]+\+", res[-1])
df.iloc[:, :5].info(buf=buf, memory_usage=True)
res = buf.getvalue().splitlines()
# excluded column with object dtype, so estimate is accurate
assert not re.match(r"memory usage: [^+]+\+", res[-1])
# Test a DataFrame with duplicate columns
dtypes = ["int64", "int64", "int64", "float64"]
data = {}
n = 100
for i, dtype in enumerate(dtypes):
data[i] = np.random.randint(2, size=n).astype(dtype)
df = DataFrame(data)
df.columns = dtypes
df_with_object_index = DataFrame({"a": [1]}, index=["foo"])
df_with_object_index.info(buf=buf, memory_usage=True)
res = buf.getvalue().splitlines()
assert re.match(r"memory usage: [^+]+\+", res[-1])
df_with_object_index.info(buf=buf, memory_usage="deep")
res = buf.getvalue().splitlines()
assert re.match(r"memory usage: [^+]+$", res[-1])
# Ensure df size is as expected
# (cols * rows * bytes) + index size
df_size = df.memory_usage().sum()
exp_size = len(dtypes) * n * 8 + df.index.nbytes
assert df_size == exp_size
# Ensure number of cols in memory_usage is the same as df
size_df = np.size(df.columns.values) + 1 # index=True; default
assert size_df == np.size(df.memory_usage())
# assert deep works only on object
assert df.memory_usage().sum() == df.memory_usage(deep=True).sum()
# test for validity
DataFrame(1, index=["a"], columns=["A"]).memory_usage(index=True)
DataFrame(1, index=["a"], columns=["A"]).index.nbytes
df = DataFrame(
data=1, index=MultiIndex.from_product([["a"], range(1000)]), columns=["A"]
)
df.index.nbytes
df.memory_usage(index=True)
df.index.values.nbytes
mem = df.memory_usage(deep=True).sum()
assert mem > 0
@pytest.mark.skipif(PYPY, reason="on PyPy deep=True doesn't change result")
def test_info_memory_usage_deep_not_pypy():
df_with_object_index = DataFrame({"a": [1]}, index=["foo"])
assert (
df_with_object_index.memory_usage(index=True, deep=True).sum()
> df_with_object_index.memory_usage(index=True).sum()
)
df_object = DataFrame({"a": ["a"]})
assert df_object.memory_usage(deep=True).sum() > df_object.memory_usage().sum()
@pytest.mark.xfail(not PYPY, reason="on PyPy deep=True does not change result")
def test_info_memory_usage_deep_pypy():
df_with_object_index = DataFrame({"a": [1]}, index=["foo"])
assert (
df_with_object_index.memory_usage(index=True, deep=True).sum()
== df_with_object_index.memory_usage(index=True).sum()
)
df_object = DataFrame({"a": ["a"]})
assert df_object.memory_usage(deep=True).sum() == df_object.memory_usage().sum()
@pytest.mark.skipif(PYPY, reason="PyPy getsizeof() fails by design")
def test_usage_via_getsizeof():
df = DataFrame(
data=1, index=MultiIndex.from_product([["a"], range(1000)]), columns=["A"]
)
mem = df.memory_usage(deep=True).sum()
# sys.getsizeof will call the .memory_usage with
# deep=True, and add on some GC overhead
diff = mem - sys.getsizeof(df)
assert abs(diff) < 100
def test_info_memory_usage_qualified():
buf = StringIO()
df = DataFrame(1, columns=list("ab"), index=[1, 2, 3])
df.info(buf=buf)
assert "+" not in buf.getvalue()
buf = StringIO()
df = DataFrame(1, columns=list("ab"), index=list("ABC"))
df.info(buf=buf)
assert "+" in buf.getvalue()
buf = StringIO()
df = DataFrame(
1, columns=list("ab"), index=MultiIndex.from_product([range(3), range(3)])
)
df.info(buf=buf)
assert "+" not in buf.getvalue()
buf = StringIO()
df = DataFrame(
1, columns=list("ab"), index=MultiIndex.from_product([range(3), ["foo", "bar"]])
)
df.info(buf=buf)
assert "+" in buf.getvalue()
def test_info_memory_usage_bug_on_multiindex():
# GH 14308
# memory usage introspection should not materialize .values
def memory_usage(f):
return f.memory_usage(deep=True).sum()
N = 100
M = len(uppercase)
index = MultiIndex.from_product(
[list(uppercase), date_range("20160101", periods=N)],
names=["id", "date"],
)
df = DataFrame({"value": np.random.randn(N * M)}, index=index)
unstacked = df.unstack("id")
assert df.values.nbytes == unstacked.values.nbytes
assert memory_usage(df) > memory_usage(unstacked)
# high upper bound
assert memory_usage(unstacked) - memory_usage(df) < 2000
def test_info_categorical():
# GH14298
idx = CategoricalIndex(["a", "b"])
df = DataFrame(np.zeros((2, 2)), index=idx, columns=idx)
buf = StringIO()
df.info(buf=buf)
@pytest.mark.xfail(not IS64, reason="GH 36579: fail on 32-bit system")
def test_info_int_columns():
# GH#37245
df = DataFrame({1: [1, 2], 2: [2, 3]}, index=["A", "B"])
buf = StringIO()
df.info(show_counts=True, buf=buf)
result = buf.getvalue()
expected = textwrap.dedent(
"""\
<class 'pandas.core.frame.DataFrame'>
Index: 2 entries, A to B
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 1 2 non-null int64
1 2 2 non-null int64
dtypes: int64(2)
memory usage: 48.0+ bytes
"""
)
assert result == expected
def test_memory_usage_empty_no_warning():
# GH#50066
df = DataFrame(index=["a", "b"])
with tm.assert_produces_warning(None):
result = df.memory_usage()
expected = Series(16 if IS64 else 8, index=["Index"])
tm.assert_series_equal(result, expected)