Inzynierka/Lib/site-packages/pandas/tests/io/parser/test_multi_thread.py
2023-06-02 12:51:02 +02:00

155 lines
3.7 KiB
Python

"""
Tests multithreading behaviour for reading and
parsing files for each parser defined in parsers.py
"""
from contextlib import ExitStack
from io import BytesIO
from multiprocessing.pool import ThreadPool
import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame
import pandas._testing as tm
# We'll probably always skip these for pyarrow
# Maybe we'll add our own tests for pyarrow too
pytestmark = pytest.mark.usefixtures("pyarrow_skip")
def _construct_dataframe(num_rows):
"""
Construct a DataFrame for testing.
Parameters
----------
num_rows : int
The number of rows for our DataFrame.
Returns
-------
df : DataFrame
"""
df = DataFrame(np.random.rand(num_rows, 5), columns=list("abcde"))
df["foo"] = "foo"
df["bar"] = "bar"
df["baz"] = "baz"
df["date"] = pd.date_range("20000101 09:00:00", periods=num_rows, freq="s")
df["int"] = np.arange(num_rows, dtype="int64")
return df
@pytest.mark.slow
def test_multi_thread_string_io_read_csv(all_parsers):
# see gh-11786
parser = all_parsers
max_row_range = 10000
num_files = 100
bytes_to_df = [
"\n".join([f"{i:d},{i:d},{i:d}" for i in range(max_row_range)]).encode()
for _ in range(num_files)
]
# Read all files in many threads.
with ExitStack() as stack:
files = [stack.enter_context(BytesIO(b)) for b in bytes_to_df]
pool = stack.enter_context(ThreadPool(8))
results = pool.map(parser.read_csv, files)
first_result = results[0]
for result in results:
tm.assert_frame_equal(first_result, result)
def _generate_multi_thread_dataframe(parser, path, num_rows, num_tasks):
"""
Generate a DataFrame via multi-thread.
Parameters
----------
parser : BaseParser
The parser object to use for reading the data.
path : str
The location of the CSV file to read.
num_rows : int
The number of rows to read per task.
num_tasks : int
The number of tasks to use for reading this DataFrame.
Returns
-------
df : DataFrame
"""
def reader(arg):
"""
Create a reader for part of the CSV.
Parameters
----------
arg : tuple
A tuple of the following:
* start : int
The starting row to start for parsing CSV
* nrows : int
The number of rows to read.
Returns
-------
df : DataFrame
"""
start, nrows = arg
if not start:
return parser.read_csv(
path, index_col=0, header=0, nrows=nrows, parse_dates=["date"]
)
return parser.read_csv(
path,
index_col=0,
header=None,
skiprows=int(start) + 1,
nrows=nrows,
parse_dates=[9],
)
tasks = [
(num_rows * i // num_tasks, num_rows // num_tasks) for i in range(num_tasks)
]
with ThreadPool(processes=num_tasks) as pool:
results = pool.map(reader, tasks)
header = results[0].columns
for r in results[1:]:
r.columns = header
final_dataframe = pd.concat(results)
return final_dataframe
@pytest.mark.slow
def test_multi_thread_path_multipart_read_csv(all_parsers):
# see gh-11786
num_tasks = 4
num_rows = 100000
parser = all_parsers
file_name = "__thread_pool_reader__.csv"
df = _construct_dataframe(num_rows)
with tm.ensure_clean(file_name) as path:
df.to_csv(path)
final_dataframe = _generate_multi_thread_dataframe(
parser, path, num_rows, num_tasks
)
tm.assert_frame_equal(df, final_dataframe)