355 lines
11 KiB
Python
355 lines
11 KiB
Python
from contextlib import closing
|
|
from pathlib import Path
|
|
import re
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas._libs.tslibs import Timestamp
|
|
from pandas.compat import is_platform_windows
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
HDFStore,
|
|
Index,
|
|
Series,
|
|
_testing as tm,
|
|
read_hdf,
|
|
)
|
|
from pandas.tests.io.pytables.common import (
|
|
_maybe_remove,
|
|
ensure_clean_store,
|
|
)
|
|
from pandas.util import _test_decorators as td
|
|
|
|
from pandas.io.pytables import TableIterator
|
|
|
|
pytestmark = pytest.mark.single_cpu
|
|
|
|
|
|
def test_read_missing_key_close_store(tmp_path, setup_path):
|
|
# GH 25766
|
|
path = tmp_path / setup_path
|
|
df = DataFrame({"a": range(2), "b": range(2)})
|
|
df.to_hdf(path, "k1")
|
|
|
|
with pytest.raises(KeyError, match="'No object named k2 in the file'"):
|
|
read_hdf(path, "k2")
|
|
|
|
# smoke test to test that file is properly closed after
|
|
# read with KeyError before another write
|
|
df.to_hdf(path, "k2")
|
|
|
|
|
|
def test_read_missing_key_opened_store(tmp_path, setup_path):
|
|
# GH 28699
|
|
path = tmp_path / setup_path
|
|
df = DataFrame({"a": range(2), "b": range(2)})
|
|
df.to_hdf(path, "k1")
|
|
|
|
with HDFStore(path, "r") as store:
|
|
with pytest.raises(KeyError, match="'No object named k2 in the file'"):
|
|
read_hdf(store, "k2")
|
|
|
|
# Test that the file is still open after a KeyError and that we can
|
|
# still read from it.
|
|
read_hdf(store, "k1")
|
|
|
|
|
|
def test_read_column(setup_path):
|
|
df = tm.makeTimeDataFrame()
|
|
|
|
with ensure_clean_store(setup_path) as store:
|
|
_maybe_remove(store, "df")
|
|
|
|
# GH 17912
|
|
# HDFStore.select_column should raise a KeyError
|
|
# exception if the key is not a valid store
|
|
with pytest.raises(KeyError, match="No object named df in the file"):
|
|
store.select_column("df", "index")
|
|
|
|
store.append("df", df)
|
|
# error
|
|
with pytest.raises(
|
|
KeyError, match=re.escape("'column [foo] not found in the table'")
|
|
):
|
|
store.select_column("df", "foo")
|
|
|
|
msg = re.escape("select_column() got an unexpected keyword argument 'where'")
|
|
with pytest.raises(TypeError, match=msg):
|
|
store.select_column("df", "index", where=["index>5"])
|
|
|
|
# valid
|
|
result = store.select_column("df", "index")
|
|
tm.assert_almost_equal(result.values, Series(df.index).values)
|
|
assert isinstance(result, Series)
|
|
|
|
# not a data indexable column
|
|
msg = re.escape(
|
|
"column [values_block_0] can not be extracted individually; "
|
|
"it is not data indexable"
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
store.select_column("df", "values_block_0")
|
|
|
|
# a data column
|
|
df2 = df.copy()
|
|
df2["string"] = "foo"
|
|
store.append("df2", df2, data_columns=["string"])
|
|
result = store.select_column("df2", "string")
|
|
tm.assert_almost_equal(result.values, df2["string"].values)
|
|
|
|
# a data column with NaNs, result excludes the NaNs
|
|
df3 = df.copy()
|
|
df3["string"] = "foo"
|
|
df3.loc[df3.index[4:6], "string"] = np.nan
|
|
store.append("df3", df3, data_columns=["string"])
|
|
result = store.select_column("df3", "string")
|
|
tm.assert_almost_equal(result.values, df3["string"].values)
|
|
|
|
# start/stop
|
|
result = store.select_column("df3", "string", start=2)
|
|
tm.assert_almost_equal(result.values, df3["string"].values[2:])
|
|
|
|
result = store.select_column("df3", "string", start=-2)
|
|
tm.assert_almost_equal(result.values, df3["string"].values[-2:])
|
|
|
|
result = store.select_column("df3", "string", stop=2)
|
|
tm.assert_almost_equal(result.values, df3["string"].values[:2])
|
|
|
|
result = store.select_column("df3", "string", stop=-2)
|
|
tm.assert_almost_equal(result.values, df3["string"].values[:-2])
|
|
|
|
result = store.select_column("df3", "string", start=2, stop=-2)
|
|
tm.assert_almost_equal(result.values, df3["string"].values[2:-2])
|
|
|
|
result = store.select_column("df3", "string", start=-2, stop=2)
|
|
tm.assert_almost_equal(result.values, df3["string"].values[-2:2])
|
|
|
|
# GH 10392 - make sure column name is preserved
|
|
df4 = DataFrame({"A": np.random.randn(10), "B": "foo"})
|
|
store.append("df4", df4, data_columns=True)
|
|
expected = df4["B"]
|
|
result = store.select_column("df4", "B")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_pytables_native_read(datapath):
|
|
with ensure_clean_store(
|
|
datapath("io", "data", "legacy_hdf/pytables_native.h5"), mode="r"
|
|
) as store:
|
|
d2 = store["detector/readout"]
|
|
assert isinstance(d2, DataFrame)
|
|
|
|
|
|
@pytest.mark.skipif(is_platform_windows(), reason="native2 read fails oddly on windows")
|
|
def test_pytables_native2_read(datapath):
|
|
with ensure_clean_store(
|
|
datapath("io", "data", "legacy_hdf", "pytables_native2.h5"), mode="r"
|
|
) as store:
|
|
str(store)
|
|
d1 = store["detector"]
|
|
assert isinstance(d1, DataFrame)
|
|
|
|
|
|
def test_legacy_table_fixed_format_read_py2(datapath):
|
|
# GH 24510
|
|
# legacy table with fixed format written in Python 2
|
|
with ensure_clean_store(
|
|
datapath("io", "data", "legacy_hdf", "legacy_table_fixed_py2.h5"), mode="r"
|
|
) as store:
|
|
result = store.select("df")
|
|
expected = DataFrame(
|
|
[[1, 2, 3, "D"]],
|
|
columns=["A", "B", "C", "D"],
|
|
index=Index(["ABC"], name="INDEX_NAME"),
|
|
)
|
|
tm.assert_frame_equal(expected, result)
|
|
|
|
|
|
def test_legacy_table_fixed_format_read_datetime_py2(datapath):
|
|
# GH 31750
|
|
# legacy table with fixed format and datetime64 column written in Python 2
|
|
with ensure_clean_store(
|
|
datapath("io", "data", "legacy_hdf", "legacy_table_fixed_datetime_py2.h5"),
|
|
mode="r",
|
|
) as store:
|
|
result = store.select("df")
|
|
expected = DataFrame(
|
|
[[Timestamp("2020-02-06T18:00")]],
|
|
columns=["A"],
|
|
index=Index(["date"]),
|
|
)
|
|
tm.assert_frame_equal(expected, result)
|
|
|
|
|
|
def test_legacy_table_read_py2(datapath):
|
|
# issue: 24925
|
|
# legacy table written in Python 2
|
|
with ensure_clean_store(
|
|
datapath("io", "data", "legacy_hdf", "legacy_table_py2.h5"), mode="r"
|
|
) as store:
|
|
result = store.select("table")
|
|
|
|
expected = DataFrame({"a": ["a", "b"], "b": [2, 3]})
|
|
tm.assert_frame_equal(expected, result)
|
|
|
|
|
|
def test_read_hdf_open_store(tmp_path, setup_path):
|
|
# GH10330
|
|
# No check for non-string path_or-buf, and no test of open store
|
|
df = DataFrame(np.random.rand(4, 5), index=list("abcd"), columns=list("ABCDE"))
|
|
df.index.name = "letters"
|
|
df = df.set_index(keys="E", append=True)
|
|
|
|
path = tmp_path / setup_path
|
|
df.to_hdf(path, "df", mode="w")
|
|
direct = read_hdf(path, "df")
|
|
with HDFStore(path, mode="r") as store:
|
|
indirect = read_hdf(store, "df")
|
|
tm.assert_frame_equal(direct, indirect)
|
|
assert store.is_open
|
|
|
|
|
|
def test_read_hdf_index_not_view(tmp_path, setup_path):
|
|
# GH 37441
|
|
# Ensure that the index of the DataFrame is not a view
|
|
# into the original recarray that pytables reads in
|
|
df = DataFrame(np.random.rand(4, 5), index=[0, 1, 2, 3], columns=list("ABCDE"))
|
|
|
|
path = tmp_path / setup_path
|
|
df.to_hdf(path, "df", mode="w", format="table")
|
|
|
|
df2 = read_hdf(path, "df")
|
|
assert df2.index._data.base is None
|
|
tm.assert_frame_equal(df, df2)
|
|
|
|
|
|
def test_read_hdf_iterator(tmp_path, setup_path):
|
|
df = DataFrame(np.random.rand(4, 5), index=list("abcd"), columns=list("ABCDE"))
|
|
df.index.name = "letters"
|
|
df = df.set_index(keys="E", append=True)
|
|
|
|
path = tmp_path / setup_path
|
|
df.to_hdf(path, "df", mode="w", format="t")
|
|
direct = read_hdf(path, "df")
|
|
iterator = read_hdf(path, "df", iterator=True)
|
|
with closing(iterator.store):
|
|
assert isinstance(iterator, TableIterator)
|
|
indirect = next(iterator.__iter__())
|
|
tm.assert_frame_equal(direct, indirect)
|
|
|
|
|
|
def test_read_nokey(tmp_path, setup_path):
|
|
# GH10443
|
|
df = DataFrame(np.random.rand(4, 5), index=list("abcd"), columns=list("ABCDE"))
|
|
|
|
# Categorical dtype not supported for "fixed" format. So no need
|
|
# to test with that dtype in the dataframe here.
|
|
path = tmp_path / setup_path
|
|
df.to_hdf(path, "df", mode="a")
|
|
reread = read_hdf(path)
|
|
tm.assert_frame_equal(df, reread)
|
|
df.to_hdf(path, "df2", mode="a")
|
|
|
|
msg = "key must be provided when HDF5 file contains multiple datasets."
|
|
with pytest.raises(ValueError, match=msg):
|
|
read_hdf(path)
|
|
|
|
|
|
def test_read_nokey_table(tmp_path, setup_path):
|
|
# GH13231
|
|
df = DataFrame({"i": range(5), "c": Series(list("abacd"), dtype="category")})
|
|
|
|
path = tmp_path / setup_path
|
|
df.to_hdf(path, "df", mode="a", format="table")
|
|
reread = read_hdf(path)
|
|
tm.assert_frame_equal(df, reread)
|
|
df.to_hdf(path, "df2", mode="a", format="table")
|
|
|
|
msg = "key must be provided when HDF5 file contains multiple datasets."
|
|
with pytest.raises(ValueError, match=msg):
|
|
read_hdf(path)
|
|
|
|
|
|
def test_read_nokey_empty(tmp_path, setup_path):
|
|
path = tmp_path / setup_path
|
|
store = HDFStore(path)
|
|
store.close()
|
|
msg = re.escape(
|
|
"Dataset(s) incompatible with Pandas data types, not table, or no "
|
|
"datasets found in HDF5 file."
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
read_hdf(path)
|
|
|
|
|
|
def test_read_from_pathlib_path(tmp_path, setup_path):
|
|
# GH11773
|
|
expected = DataFrame(
|
|
np.random.rand(4, 5), index=list("abcd"), columns=list("ABCDE")
|
|
)
|
|
filename = tmp_path / setup_path
|
|
path_obj = Path(filename)
|
|
|
|
expected.to_hdf(path_obj, "df", mode="a")
|
|
actual = read_hdf(path_obj, "df")
|
|
|
|
tm.assert_frame_equal(expected, actual)
|
|
|
|
|
|
@td.skip_if_no("py.path")
|
|
def test_read_from_py_localpath(tmp_path, setup_path):
|
|
# GH11773
|
|
from py.path import local as LocalPath
|
|
|
|
expected = DataFrame(
|
|
np.random.rand(4, 5), index=list("abcd"), columns=list("ABCDE")
|
|
)
|
|
filename = tmp_path / setup_path
|
|
path_obj = LocalPath(filename)
|
|
|
|
expected.to_hdf(path_obj, "df", mode="a")
|
|
actual = read_hdf(path_obj, "df")
|
|
|
|
tm.assert_frame_equal(expected, actual)
|
|
|
|
|
|
@pytest.mark.parametrize("format", ["fixed", "table"])
|
|
def test_read_hdf_series_mode_r(tmp_path, format, setup_path):
|
|
# GH 16583
|
|
# Tests that reading a Series saved to an HDF file
|
|
# still works if a mode='r' argument is supplied
|
|
series = tm.makeFloatSeries()
|
|
path = tmp_path / setup_path
|
|
series.to_hdf(path, key="data", format=format)
|
|
result = read_hdf(path, key="data", mode="r")
|
|
tm.assert_series_equal(result, series)
|
|
|
|
|
|
def test_read_py2_hdf_file_in_py3(datapath):
|
|
# GH 16781
|
|
|
|
# tests reading a PeriodIndex DataFrame written in Python2 in Python3
|
|
|
|
# the file was generated in Python 2.7 like so:
|
|
#
|
|
# df = DataFrame([1.,2,3], index=pd.PeriodIndex(
|
|
# ['2015-01-01', '2015-01-02', '2015-01-05'], freq='B'))
|
|
# df.to_hdf('periodindex_0.20.1_x86_64_darwin_2.7.13.h5', 'p')
|
|
|
|
expected = DataFrame(
|
|
[1.0, 2, 3],
|
|
index=pd.PeriodIndex(["2015-01-01", "2015-01-02", "2015-01-05"], freq="B"),
|
|
)
|
|
|
|
with ensure_clean_store(
|
|
datapath(
|
|
"io", "data", "legacy_hdf", "periodindex_0.20.1_x86_64_darwin_2.7.13.h5"
|
|
),
|
|
mode="r",
|
|
) as store:
|
|
result = store["p"]
|
|
tm.assert_frame_equal(result, expected)
|