Inzynierka/Lib/site-packages/pandas/tests/io/pytables/test_round_trip.py
2023-06-02 12:51:02 +02:00

545 lines
17 KiB
Python

import datetime
import re
from warnings import (
catch_warnings,
simplefilter,
)
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
from pandas.compat import is_platform_windows
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
_testing as tm,
bdate_range,
read_hdf,
)
from pandas.tests.io.pytables.common import (
_maybe_remove,
ensure_clean_store,
)
from pandas.util import _test_decorators as td
_default_compressor = "blosc"
pytestmark = pytest.mark.single_cpu
def test_conv_read_write():
with tm.ensure_clean() as path:
def roundtrip(key, obj, **kwargs):
obj.to_hdf(path, key, **kwargs)
return read_hdf(path, key)
o = tm.makeTimeSeries()
tm.assert_series_equal(o, roundtrip("series", o))
o = tm.makeStringSeries()
tm.assert_series_equal(o, roundtrip("string_series", o))
o = tm.makeDataFrame()
tm.assert_frame_equal(o, roundtrip("frame", o))
# table
df = DataFrame({"A": range(5), "B": range(5)})
df.to_hdf(path, "table", append=True)
result = read_hdf(path, "table", where=["index>2"])
tm.assert_frame_equal(df[df.index > 2], result)
def test_long_strings(setup_path):
# GH6166
df = DataFrame(
{"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10)
)
with ensure_clean_store(setup_path) as store:
store.append("df", df, data_columns=["a"])
result = store.select("df")
tm.assert_frame_equal(df, result)
def test_api(tmp_path, setup_path):
# GH4584
# API issue when to_hdf doesn't accept append AND format args
path = tmp_path / setup_path
df = tm.makeDataFrame()
df.iloc[:10].to_hdf(path, "df", append=True, format="table")
df.iloc[10:].to_hdf(path, "df", append=True, format="table")
tm.assert_frame_equal(read_hdf(path, "df"), df)
# append to False
df.iloc[:10].to_hdf(path, "df", append=False, format="table")
df.iloc[10:].to_hdf(path, "df", append=True, format="table")
tm.assert_frame_equal(read_hdf(path, "df"), df)
def test_api_append(tmp_path, setup_path):
path = tmp_path / setup_path
df = tm.makeDataFrame()
df.iloc[:10].to_hdf(path, "df", append=True)
df.iloc[10:].to_hdf(path, "df", append=True, format="table")
tm.assert_frame_equal(read_hdf(path, "df"), df)
# append to False
df.iloc[:10].to_hdf(path, "df", append=False, format="table")
df.iloc[10:].to_hdf(path, "df", append=True)
tm.assert_frame_equal(read_hdf(path, "df"), df)
def test_api_2(tmp_path, setup_path):
path = tmp_path / setup_path
df = tm.makeDataFrame()
df.to_hdf(path, "df", append=False, format="fixed")
tm.assert_frame_equal(read_hdf(path, "df"), df)
df.to_hdf(path, "df", append=False, format="f")
tm.assert_frame_equal(read_hdf(path, "df"), df)
df.to_hdf(path, "df", append=False)
tm.assert_frame_equal(read_hdf(path, "df"), df)
df.to_hdf(path, "df")
tm.assert_frame_equal(read_hdf(path, "df"), df)
with ensure_clean_store(setup_path) as store:
df = tm.makeDataFrame()
_maybe_remove(store, "df")
store.append("df", df.iloc[:10], append=True, format="table")
store.append("df", df.iloc[10:], append=True, format="table")
tm.assert_frame_equal(store.select("df"), df)
# append to False
_maybe_remove(store, "df")
store.append("df", df.iloc[:10], append=False, format="table")
store.append("df", df.iloc[10:], append=True, format="table")
tm.assert_frame_equal(store.select("df"), df)
# formats
_maybe_remove(store, "df")
store.append("df", df.iloc[:10], append=False, format="table")
store.append("df", df.iloc[10:], append=True, format="table")
tm.assert_frame_equal(store.select("df"), df)
_maybe_remove(store, "df")
store.append("df", df.iloc[:10], append=False, format="table")
store.append("df", df.iloc[10:], append=True, format=None)
tm.assert_frame_equal(store.select("df"), df)
def test_api_invalid(tmp_path, setup_path):
path = tmp_path / setup_path
# Invalid.
df = tm.makeDataFrame()
msg = "Can only append to Tables"
with pytest.raises(ValueError, match=msg):
df.to_hdf(path, "df", append=True, format="f")
with pytest.raises(ValueError, match=msg):
df.to_hdf(path, "df", append=True, format="fixed")
msg = r"invalid HDFStore format specified \[foo\]"
with pytest.raises(TypeError, match=msg):
df.to_hdf(path, "df", append=True, format="foo")
with pytest.raises(TypeError, match=msg):
df.to_hdf(path, "df", append=False, format="foo")
# File path doesn't exist
path = ""
msg = f"File {path} does not exist"
with pytest.raises(FileNotFoundError, match=msg):
read_hdf(path, "df")
def test_get(setup_path):
with ensure_clean_store(setup_path) as store:
store["a"] = tm.makeTimeSeries()
left = store.get("a")
right = store["a"]
tm.assert_series_equal(left, right)
left = store.get("/a")
right = store["/a"]
tm.assert_series_equal(left, right)
with pytest.raises(KeyError, match="'No object named b in the file'"):
store.get("b")
def test_put_integer(setup_path):
# non-date, non-string index
df = DataFrame(np.random.randn(50, 100))
_check_roundtrip(df, tm.assert_frame_equal, setup_path)
def test_table_values_dtypes_roundtrip(setup_path):
with ensure_clean_store(setup_path) as store:
df1 = DataFrame({"a": [1, 2, 3]}, dtype="f8")
store.append("df_f8", df1)
tm.assert_series_equal(df1.dtypes, store["df_f8"].dtypes)
df2 = DataFrame({"a": [1, 2, 3]}, dtype="i8")
store.append("df_i8", df2)
tm.assert_series_equal(df2.dtypes, store["df_i8"].dtypes)
# incompatible dtype
msg = re.escape(
"invalid combination of [values_axes] on appending data "
"[name->values_block_0,cname->values_block_0,"
"dtype->float64,kind->float,shape->(1, 3)] vs "
"current table [name->values_block_0,"
"cname->values_block_0,dtype->int64,kind->integer,"
"shape->None]"
)
with pytest.raises(ValueError, match=msg):
store.append("df_i8", df1)
# check creation/storage/retrieval of float32 (a bit hacky to
# actually create them thought)
df1 = DataFrame(np.array([[1], [2], [3]], dtype="f4"), columns=["A"])
store.append("df_f4", df1)
tm.assert_series_equal(df1.dtypes, store["df_f4"].dtypes)
assert df1.dtypes[0] == "float32"
# check with mixed dtypes
df1 = DataFrame(
{
c: Series(np.random.randint(5), dtype=c)
for c in ["float32", "float64", "int32", "int64", "int16", "int8"]
}
)
df1["string"] = "foo"
df1["float322"] = 1.0
df1["float322"] = df1["float322"].astype("float32")
df1["bool"] = df1["float32"] > 0
df1["time1"] = Timestamp("20130101")
df1["time2"] = Timestamp("20130102")
store.append("df_mixed_dtypes1", df1)
result = store.select("df_mixed_dtypes1").dtypes.value_counts()
result.index = [str(i) for i in result.index]
expected = Series(
{
"float32": 2,
"float64": 1,
"int32": 1,
"bool": 1,
"int16": 1,
"int8": 1,
"int64": 1,
"object": 1,
"datetime64[ns]": 2,
},
name="count",
)
result = result.sort_index()
expected = expected.sort_index()
tm.assert_series_equal(result, expected)
@pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning")
def test_series(setup_path):
s = tm.makeStringSeries()
_check_roundtrip(s, tm.assert_series_equal, path=setup_path)
ts = tm.makeTimeSeries()
_check_roundtrip(ts, tm.assert_series_equal, path=setup_path)
ts2 = Series(ts.index, Index(ts.index, dtype=object))
_check_roundtrip(ts2, tm.assert_series_equal, path=setup_path)
ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object))
_check_roundtrip(
ts3, tm.assert_series_equal, path=setup_path, check_index_type=False
)
def test_float_index(setup_path):
# GH #454
index = np.random.randn(10)
s = Series(np.random.randn(10), index=index)
_check_roundtrip(s, tm.assert_series_equal, path=setup_path)
def test_tuple_index(setup_path):
# GH #492
col = np.arange(10)
idx = [(0.0, 1.0), (2.0, 3.0), (4.0, 5.0)]
data = np.random.randn(30).reshape((3, 10))
DF = DataFrame(data, index=idx, columns=col)
with catch_warnings(record=True):
simplefilter("ignore", pd.errors.PerformanceWarning)
_check_roundtrip(DF, tm.assert_frame_equal, path=setup_path)
@pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning")
def test_index_types(setup_path):
with catch_warnings(record=True):
values = np.random.randn(2)
func = lambda lhs, rhs: tm.assert_series_equal(lhs, rhs, check_index_type=True)
with catch_warnings(record=True):
ser = Series(values, [0, "y"])
_check_roundtrip(ser, func, path=setup_path)
with catch_warnings(record=True):
ser = Series(values, [datetime.datetime.today(), 0])
_check_roundtrip(ser, func, path=setup_path)
with catch_warnings(record=True):
ser = Series(values, ["y", 0])
_check_roundtrip(ser, func, path=setup_path)
with catch_warnings(record=True):
ser = Series(values, [datetime.date.today(), "a"])
_check_roundtrip(ser, func, path=setup_path)
with catch_warnings(record=True):
ser = Series(values, [0, "y"])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, [datetime.datetime.today(), 0])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, ["y", 0])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, [datetime.date.today(), "a"])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, [1.23, "b"])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, [1, 1.53])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, [1, 5])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(
values, [datetime.datetime(2012, 1, 1), datetime.datetime(2012, 1, 2)]
)
_check_roundtrip(ser, func, path=setup_path)
def test_timeseries_preepoch(setup_path, request):
dr = bdate_range("1/1/1940", "1/1/1960")
ts = Series(np.random.randn(len(dr)), index=dr)
try:
_check_roundtrip(ts, tm.assert_series_equal, path=setup_path)
except OverflowError:
if is_platform_windows():
request.node.add_marker(
pytest.mark.xfail("known failure on some windows platforms")
)
raise
@pytest.mark.parametrize(
"compression", [False, pytest.param(True, marks=td.skip_if_windows)]
)
def test_frame(compression, setup_path):
df = tm.makeDataFrame()
# put in some random NAs
df.iloc[0, 0] = np.nan
df.iloc[5, 3] = np.nan
_check_roundtrip_table(
df, tm.assert_frame_equal, path=setup_path, compression=compression
)
_check_roundtrip(
df, tm.assert_frame_equal, path=setup_path, compression=compression
)
tdf = tm.makeTimeDataFrame()
_check_roundtrip(
tdf, tm.assert_frame_equal, path=setup_path, compression=compression
)
with ensure_clean_store(setup_path) as store:
# not consolidated
df["foo"] = np.random.randn(len(df))
store["df"] = df
recons = store["df"]
assert recons._mgr.is_consolidated()
# empty
_check_roundtrip(df[:0], tm.assert_frame_equal, path=setup_path)
def test_empty_series_frame(setup_path):
s0 = Series(dtype=object)
s1 = Series(name="myseries", dtype=object)
df0 = DataFrame()
df1 = DataFrame(index=["a", "b", "c"])
df2 = DataFrame(columns=["d", "e", "f"])
_check_roundtrip(s0, tm.assert_series_equal, path=setup_path)
_check_roundtrip(s1, tm.assert_series_equal, path=setup_path)
_check_roundtrip(df0, tm.assert_frame_equal, path=setup_path)
_check_roundtrip(df1, tm.assert_frame_equal, path=setup_path)
_check_roundtrip(df2, tm.assert_frame_equal, path=setup_path)
@pytest.mark.parametrize("dtype", [np.int64, np.float64, object, "m8[ns]", "M8[ns]"])
def test_empty_series(dtype, setup_path):
s = Series(dtype=dtype)
_check_roundtrip(s, tm.assert_series_equal, path=setup_path)
def test_can_serialize_dates(setup_path):
rng = [x.date() for x in bdate_range("1/1/2000", "1/30/2000")]
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
_check_roundtrip(frame, tm.assert_frame_equal, path=setup_path)
def test_store_hierarchical(setup_path, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
_check_roundtrip(frame, tm.assert_frame_equal, path=setup_path)
_check_roundtrip(frame.T, tm.assert_frame_equal, path=setup_path)
_check_roundtrip(frame["A"], tm.assert_series_equal, path=setup_path)
# check that the names are stored
with ensure_clean_store(setup_path) as store:
store["frame"] = frame
recons = store["frame"]
tm.assert_frame_equal(recons, frame)
@pytest.mark.parametrize(
"compression", [False, pytest.param(True, marks=td.skip_if_windows)]
)
def test_store_mixed(compression, setup_path):
def _make_one():
df = tm.makeDataFrame()
df["obj1"] = "foo"
df["obj2"] = "bar"
df["bool1"] = df["A"] > 0
df["bool2"] = df["B"] > 0
df["int1"] = 1
df["int2"] = 2
return df._consolidate()
df1 = _make_one()
df2 = _make_one()
_check_roundtrip(df1, tm.assert_frame_equal, path=setup_path)
_check_roundtrip(df2, tm.assert_frame_equal, path=setup_path)
with ensure_clean_store(setup_path) as store:
store["obj"] = df1
tm.assert_frame_equal(store["obj"], df1)
store["obj"] = df2
tm.assert_frame_equal(store["obj"], df2)
# check that can store Series of all of these types
_check_roundtrip(
df1["obj1"],
tm.assert_series_equal,
path=setup_path,
compression=compression,
)
_check_roundtrip(
df1["bool1"],
tm.assert_series_equal,
path=setup_path,
compression=compression,
)
_check_roundtrip(
df1["int1"],
tm.assert_series_equal,
path=setup_path,
compression=compression,
)
def _check_roundtrip(obj, comparator, path, compression=False, **kwargs):
options = {}
if compression:
options["complib"] = _default_compressor
with ensure_clean_store(path, "w", **options) as store:
store["obj"] = obj
retrieved = store["obj"]
comparator(retrieved, obj, **kwargs)
def _check_roundtrip_table(obj, comparator, path, compression=False):
options = {}
if compression:
options["complib"] = _default_compressor
with ensure_clean_store(path, "w", **options) as store:
store.put("obj", obj, format="table")
retrieved = store["obj"]
comparator(retrieved, obj)
def test_unicode_index(setup_path):
unicode_values = ["\u03c3", "\u03c3\u03c3"]
# PerformanceWarning
with catch_warnings(record=True):
simplefilter("ignore", pd.errors.PerformanceWarning)
s = Series(np.random.randn(len(unicode_values)), unicode_values)
_check_roundtrip(s, tm.assert_series_equal, path=setup_path)
def test_unicode_longer_encoded(setup_path):
# GH 11234
char = "\u0394"
df = DataFrame({"A": [char]})
with ensure_clean_store(setup_path) as store:
store.put("df", df, format="table", encoding="utf-8")
result = store.get("df")
tm.assert_frame_equal(result, df)
df = DataFrame({"A": ["a", char], "B": ["b", "b"]})
with ensure_clean_store(setup_path) as store:
store.put("df", df, format="table", encoding="utf-8")
result = store.get("df")
tm.assert_frame_equal(result, df)
def test_store_datetime_mixed(setup_path):
df = DataFrame({"a": [1, 2, 3], "b": [1.0, 2.0, 3.0], "c": ["a", "b", "c"]})
ts = tm.makeTimeSeries()
df["d"] = ts.index[:3]
_check_roundtrip(df, tm.assert_frame_equal, path=setup_path)
def test_round_trip_equals(tmp_path, setup_path):
# GH 9330
df = DataFrame({"B": [1, 2], "A": ["x", "y"]})
path = tmp_path / setup_path
df.to_hdf(path, "df", format="table")
other = read_hdf(path, "df")
tm.assert_frame_equal(df, other)
assert df.equals(other)
assert other.equals(df)