Inzynierka/Lib/site-packages/pandas/tests/test_sorting.py
2023-06-02 12:51:02 +02:00

519 lines
17 KiB
Python

from collections import defaultdict
from datetime import datetime
from itertools import product
import numpy as np
import pytest
from pandas.compat import (
is_ci_environment,
is_platform_windows,
)
from pandas import (
NA,
DataFrame,
MultiIndex,
Series,
array,
concat,
merge,
)
import pandas._testing as tm
from pandas.core.algorithms import safe_sort
import pandas.core.common as com
from pandas.core.sorting import (
_decons_group_index,
get_group_index,
is_int64_overflow_possible,
lexsort_indexer,
nargsort,
)
@pytest.fixture
def left_right():
low, high, n = -1 << 10, 1 << 10, 1 << 20
left = DataFrame(np.random.randint(low, high, (n, 7)), columns=list("ABCDEFG"))
left["left"] = left.sum(axis=1)
# one-2-one match
i = np.random.permutation(len(left))
right = left.iloc[i].copy()
right.columns = right.columns[:-1].tolist() + ["right"]
right.index = np.arange(len(right))
right["right"] *= -1
return left, right
class TestSorting:
@pytest.mark.slow
def test_int64_overflow(self):
B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500)))
A = np.arange(2500)
df = DataFrame(
{
"A": A,
"B": B,
"C": A,
"D": B,
"E": A,
"F": B,
"G": A,
"H": B,
"values": np.random.randn(2500),
}
)
lg = df.groupby(["A", "B", "C", "D", "E", "F", "G", "H"])
rg = df.groupby(["H", "G", "F", "E", "D", "C", "B", "A"])
left = lg.sum()["values"]
right = rg.sum()["values"]
exp_index, _ = left.index.sortlevel()
tm.assert_index_equal(left.index, exp_index)
exp_index, _ = right.index.sortlevel(0)
tm.assert_index_equal(right.index, exp_index)
tups = list(map(tuple, df[["A", "B", "C", "D", "E", "F", "G", "H"]].values))
tups = com.asarray_tuplesafe(tups)
expected = df.groupby(tups).sum()["values"]
for k, v in expected.items():
assert left[k] == right[k[::-1]]
assert left[k] == v
assert len(left) == len(right)
def test_int64_overflow_groupby_large_range(self):
# GH9096
values = range(55109)
data = DataFrame.from_dict({"a": values, "b": values, "c": values, "d": values})
grouped = data.groupby(["a", "b", "c", "d"])
assert len(grouped) == len(values)
@pytest.mark.parametrize("agg", ["mean", "median"])
def test_int64_overflow_groupby_large_df_shuffled(self, agg):
arr = np.random.randint(-1 << 12, 1 << 12, (1 << 15, 5))
i = np.random.choice(len(arr), len(arr) * 4)
arr = np.vstack((arr, arr[i])) # add some duplicate rows
i = np.random.permutation(len(arr))
arr = arr[i] # shuffle rows
df = DataFrame(arr, columns=list("abcde"))
df["jim"], df["joe"] = np.random.randn(2, len(df)) * 10
gr = df.groupby(list("abcde"))
# verify this is testing what it is supposed to test!
assert is_int64_overflow_possible(gr.grouper.shape)
# manually compute groupings
jim, joe = defaultdict(list), defaultdict(list)
for key, a, b in zip(map(tuple, arr), df["jim"], df["joe"]):
jim[key].append(a)
joe[key].append(b)
assert len(gr) == len(jim)
mi = MultiIndex.from_tuples(jim.keys(), names=list("abcde"))
f = lambda a: np.fromiter(map(getattr(np, agg), a), dtype="f8")
arr = np.vstack((f(jim.values()), f(joe.values()))).T
res = DataFrame(arr, columns=["jim", "joe"], index=mi).sort_index()
tm.assert_frame_equal(getattr(gr, agg)(), res)
@pytest.mark.parametrize(
"order, na_position, exp",
[
[
True,
"last",
list(range(5, 105)) + list(range(5)) + list(range(105, 110)),
],
[
True,
"first",
list(range(5)) + list(range(105, 110)) + list(range(5, 105)),
],
[
False,
"last",
list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)),
],
[
False,
"first",
list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)),
],
],
)
def test_lexsort_indexer(self, order, na_position, exp):
keys = [[np.nan] * 5 + list(range(100)) + [np.nan] * 5]
result = lexsort_indexer(keys, orders=order, na_position=na_position)
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))
@pytest.mark.parametrize(
"ascending, na_position, exp, box",
[
[
True,
"last",
list(range(5, 105)) + list(range(5)) + list(range(105, 110)),
list,
],
[
True,
"first",
list(range(5)) + list(range(105, 110)) + list(range(5, 105)),
list,
],
[
False,
"last",
list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)),
list,
],
[
False,
"first",
list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)),
list,
],
[
True,
"last",
list(range(5, 105)) + list(range(5)) + list(range(105, 110)),
lambda x: np.array(x, dtype="O"),
],
[
True,
"first",
list(range(5)) + list(range(105, 110)) + list(range(5, 105)),
lambda x: np.array(x, dtype="O"),
],
[
False,
"last",
list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)),
lambda x: np.array(x, dtype="O"),
],
[
False,
"first",
list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)),
lambda x: np.array(x, dtype="O"),
],
],
)
def test_nargsort(self, ascending, na_position, exp, box):
# list places NaNs last, np.array(..., dtype="O") may not place NaNs first
items = box([np.nan] * 5 + list(range(100)) + [np.nan] * 5)
# mergesort is the most difficult to get right because we want it to be
# stable.
# According to numpy/core/tests/test_multiarray, """The number of
# sorted items must be greater than ~50 to check the actual algorithm
# because quick and merge sort fall over to insertion sort for small
# arrays."""
result = nargsort(
items, kind="mergesort", ascending=ascending, na_position=na_position
)
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)
class TestMerge:
def test_int64_overflow_outer_merge(self):
# #2690, combinatorial explosion
df1 = DataFrame(np.random.randn(1000, 7), columns=list("ABCDEF") + ["G1"])
df2 = DataFrame(np.random.randn(1000, 7), columns=list("ABCDEF") + ["G2"])
result = merge(df1, df2, how="outer")
assert len(result) == 2000
@pytest.mark.slow
def test_int64_overflow_check_sum_col(self, left_right):
left, right = left_right
out = merge(left, right, how="outer")
assert len(out) == len(left)
tm.assert_series_equal(out["left"], -out["right"], check_names=False)
result = out.iloc[:, :-2].sum(axis=1)
tm.assert_series_equal(out["left"], result, check_names=False)
assert result.name is None
@pytest.mark.slow
@pytest.mark.parametrize("how", ["left", "right", "outer", "inner"])
def test_int64_overflow_how_merge(self, left_right, how):
left, right = left_right
out = merge(left, right, how="outer")
out.sort_values(out.columns.tolist(), inplace=True)
out.index = np.arange(len(out))
tm.assert_frame_equal(out, merge(left, right, how=how, sort=True))
@pytest.mark.slow
def test_int64_overflow_sort_false_order(self, left_right):
left, right = left_right
# check that left merge w/ sort=False maintains left frame order
out = merge(left, right, how="left", sort=False)
tm.assert_frame_equal(left, out[left.columns.tolist()])
out = merge(right, left, how="left", sort=False)
tm.assert_frame_equal(right, out[right.columns.tolist()])
@pytest.mark.slow
@pytest.mark.parametrize("how", ["left", "right", "outer", "inner"])
@pytest.mark.parametrize("sort", [True, False])
def test_int64_overflow_one_to_many_none_match(self, how, sort):
# one-2-many/none match
low, high, n = -1 << 10, 1 << 10, 1 << 11
left = DataFrame(
np.random.randint(low, high, (n, 7)).astype("int64"),
columns=list("ABCDEFG"),
)
# confirm that this is checking what it is supposed to check
shape = left.apply(Series.nunique).values
assert is_int64_overflow_possible(shape)
# add duplicates to left frame
left = concat([left, left], ignore_index=True)
right = DataFrame(
np.random.randint(low, high, (n // 2, 7)).astype("int64"),
columns=list("ABCDEFG"),
)
# add duplicates & overlap with left to the right frame
i = np.random.choice(len(left), n)
right = concat([right, right, left.iloc[i]], ignore_index=True)
left["left"] = np.random.randn(len(left))
right["right"] = np.random.randn(len(right))
# shuffle left & right frames
i = np.random.permutation(len(left))
left = left.iloc[i].copy()
left.index = np.arange(len(left))
i = np.random.permutation(len(right))
right = right.iloc[i].copy()
right.index = np.arange(len(right))
# manually compute outer merge
ldict, rdict = defaultdict(list), defaultdict(list)
for idx, row in left.set_index(list("ABCDEFG")).iterrows():
ldict[idx].append(row["left"])
for idx, row in right.set_index(list("ABCDEFG")).iterrows():
rdict[idx].append(row["right"])
vals = []
for k, lval in ldict.items():
rval = rdict.get(k, [np.nan])
for lv, rv in product(lval, rval):
vals.append(
k
+ (
lv,
rv,
)
)
for k, rval in rdict.items():
if k not in ldict:
for rv in rval:
vals.append(
k
+ (
np.nan,
rv,
)
)
def align(df):
df = df.sort_values(df.columns.tolist())
df.index = np.arange(len(df))
return df
out = DataFrame(vals, columns=list("ABCDEFG") + ["left", "right"])
out = align(out)
jmask = {
"left": out["left"].notna(),
"right": out["right"].notna(),
"inner": out["left"].notna() & out["right"].notna(),
"outer": np.ones(len(out), dtype="bool"),
}
mask = jmask[how]
frame = align(out[mask].copy())
assert mask.all() ^ mask.any() or how == "outer"
res = merge(left, right, how=how, sort=sort)
if sort:
kcols = list("ABCDEFG")
tm.assert_frame_equal(
res[kcols].copy(), res[kcols].sort_values(kcols, kind="mergesort")
)
# as in GH9092 dtypes break with outer/right join
# 2021-12-18: dtype does not break anymore
tm.assert_frame_equal(frame, align(res))
@pytest.mark.parametrize(
"codes_list, shape",
[
[
[
np.tile([0, 1, 2, 3, 0, 1, 2, 3], 100).astype(np.int64),
np.tile([0, 2, 4, 3, 0, 1, 2, 3], 100).astype(np.int64),
np.tile([5, 1, 0, 2, 3, 0, 5, 4], 100).astype(np.int64),
],
(4, 5, 6),
],
[
[
np.tile(np.arange(10000, dtype=np.int64), 5),
np.tile(np.arange(10000, dtype=np.int64), 5),
],
(10000, 10000),
],
],
)
def test_decons(codes_list, shape):
group_index = get_group_index(codes_list, shape, sort=True, xnull=True)
codes_list2 = _decons_group_index(group_index, shape)
for a, b in zip(codes_list, codes_list2):
tm.assert_numpy_array_equal(a, b)
class TestSafeSort:
@pytest.mark.parametrize(
"arg, exp",
[
[[3, 1, 2, 0, 4], [0, 1, 2, 3, 4]],
[list("baaacb"), np.array(list("aaabbc"), dtype=object)],
[[], []],
],
)
def test_basic_sort(self, arg, exp):
result = safe_sort(arg)
expected = np.array(exp)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("verify", [True, False])
@pytest.mark.parametrize(
"codes, exp_codes",
[
[[0, 1, 1, 2, 3, 0, -1, 4], [3, 1, 1, 2, 0, 3, -1, 4]],
[[], []],
],
)
def test_codes(self, verify, codes, exp_codes):
values = [3, 1, 2, 0, 4]
expected = np.array([0, 1, 2, 3, 4])
result, result_codes = safe_sort(
values, codes, use_na_sentinel=True, verify=verify
)
expected_codes = np.array(exp_codes, dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
tm.assert_numpy_array_equal(result_codes, expected_codes)
@pytest.mark.skipif(
is_platform_windows() and is_ci_environment(),
reason="In CI environment can crash thread with: "
"Windows fatal exception: access violation",
)
def test_codes_out_of_bound(self):
values = [3, 1, 2, 0, 4]
expected = np.array([0, 1, 2, 3, 4])
# out of bound indices
codes = [0, 101, 102, 2, 3, 0, 99, 4]
result, result_codes = safe_sort(values, codes, use_na_sentinel=True)
expected_codes = np.array([3, -1, -1, 2, 0, 3, -1, 4], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
tm.assert_numpy_array_equal(result_codes, expected_codes)
@pytest.mark.parametrize("box", [lambda x: np.array(x, dtype=object), list])
def test_mixed_integer(self, box):
values = box(["b", 1, 0, "a", 0, "b"])
result = safe_sort(values)
expected = np.array([0, 0, 1, "a", "b", "b"], dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_mixed_integer_with_codes(self):
values = np.array(["b", 1, 0, "a"], dtype=object)
codes = [0, 1, 2, 3, 0, -1, 1]
result, result_codes = safe_sort(values, codes)
expected = np.array([0, 1, "a", "b"], dtype=object)
expected_codes = np.array([3, 1, 0, 2, 3, -1, 1], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
tm.assert_numpy_array_equal(result_codes, expected_codes)
def test_unsortable(self):
# GH 13714
arr = np.array([1, 2, datetime.now(), 0, 3], dtype=object)
msg = "'[<>]' not supported between instances of .*"
with pytest.raises(TypeError, match=msg):
safe_sort(arr)
@pytest.mark.parametrize(
"arg, codes, err, msg",
[
[1, None, TypeError, "Only list-like objects are allowed"],
[[0, 1, 2], 1, TypeError, "Only list-like objects or None"],
[[0, 1, 2, 1], [0, 1], ValueError, "values should be unique"],
],
)
def test_exceptions(self, arg, codes, err, msg):
with pytest.raises(err, match=msg):
safe_sort(values=arg, codes=codes)
@pytest.mark.parametrize(
"arg, exp", [[[1, 3, 2], [1, 2, 3]], [[1, 3, np.nan, 2], [1, 2, 3, np.nan]]]
)
def test_extension_array(self, arg, exp):
a = array(arg, dtype="Int64")
result = safe_sort(a)
expected = array(exp, dtype="Int64")
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize("verify", [True, False])
def test_extension_array_codes(self, verify):
a = array([1, 3, 2], dtype="Int64")
result, codes = safe_sort(a, [0, 1, -1, 2], use_na_sentinel=True, verify=verify)
expected_values = array([1, 2, 3], dtype="Int64")
expected_codes = np.array([0, 2, -1, 1], dtype=np.intp)
tm.assert_extension_array_equal(result, expected_values)
tm.assert_numpy_array_equal(codes, expected_codes)
def test_mixed_str_null(nulls_fixture):
values = np.array(["b", nulls_fixture, "a", "b"], dtype=object)
result = safe_sort(values)
expected = np.array(["a", "b", "b", nulls_fixture], dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_safe_sort_multiindex():
# GH#48412
arr1 = Series([2, 1, NA, NA], dtype="Int64")
arr2 = [2, 1, 3, 3]
midx = MultiIndex.from_arrays([arr1, arr2])
result = safe_sort(midx)
expected = MultiIndex.from_arrays(
[Series([1, 2, NA, NA], dtype="Int64"), [1, 2, 3, 3]]
)
tm.assert_index_equal(result, expected)