621 lines
19 KiB
Python
621 lines
19 KiB
Python
|
"""
|
||
|
General tests for all estimators in sklearn.
|
||
|
"""
|
||
|
|
||
|
# Authors: Andreas Mueller <amueller@ais.uni-bonn.de>
|
||
|
# Gael Varoquaux gael.varoquaux@normalesup.org
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import os
|
||
|
import warnings
|
||
|
import sys
|
||
|
import re
|
||
|
import pkgutil
|
||
|
from inspect import isgenerator, signature
|
||
|
from itertools import product, chain
|
||
|
from functools import partial
|
||
|
|
||
|
import pytest
|
||
|
import numpy as np
|
||
|
|
||
|
from sklearn.cluster import (
|
||
|
AffinityPropagation,
|
||
|
Birch,
|
||
|
MeanShift,
|
||
|
OPTICS,
|
||
|
SpectralClustering,
|
||
|
)
|
||
|
from sklearn.datasets import make_blobs
|
||
|
from sklearn.manifold import Isomap, TSNE, LocallyLinearEmbedding
|
||
|
from sklearn.neighbors import (
|
||
|
LocalOutlierFactor,
|
||
|
KNeighborsClassifier,
|
||
|
KNeighborsRegressor,
|
||
|
RadiusNeighborsClassifier,
|
||
|
RadiusNeighborsRegressor,
|
||
|
)
|
||
|
from sklearn.preprocessing import FunctionTransformer
|
||
|
from sklearn.semi_supervised import LabelPropagation, LabelSpreading
|
||
|
|
||
|
from sklearn.utils import all_estimators
|
||
|
from sklearn.utils._testing import ignore_warnings
|
||
|
from sklearn.exceptions import ConvergenceWarning
|
||
|
from sklearn.exceptions import FitFailedWarning
|
||
|
from sklearn.utils.estimator_checks import check_estimator
|
||
|
|
||
|
import sklearn
|
||
|
|
||
|
# make it possible to discover experimental estimators when calling `all_estimators`
|
||
|
from sklearn.experimental import enable_iterative_imputer # noqa
|
||
|
from sklearn.experimental import enable_halving_search_cv # noqa
|
||
|
|
||
|
from sklearn.decomposition import PCA
|
||
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||
|
from sklearn.linear_model._base import LinearClassifierMixin
|
||
|
from sklearn.linear_model import LogisticRegression
|
||
|
from sklearn.linear_model import Ridge
|
||
|
from sklearn.model_selection import GridSearchCV
|
||
|
from sklearn.model_selection import RandomizedSearchCV
|
||
|
from sklearn.model_selection import HalvingGridSearchCV
|
||
|
from sklearn.model_selection import HalvingRandomSearchCV
|
||
|
from sklearn.pipeline import make_pipeline
|
||
|
|
||
|
from sklearn.utils import IS_PYPY
|
||
|
from sklearn.utils._tags import _DEFAULT_TAGS, _safe_tags
|
||
|
from sklearn.utils._testing import (
|
||
|
SkipTest,
|
||
|
set_random_state,
|
||
|
)
|
||
|
from sklearn.utils.estimator_checks import (
|
||
|
_construct_instance,
|
||
|
_set_checking_parameters,
|
||
|
_get_check_estimator_ids,
|
||
|
check_class_weight_balanced_linear_classifier,
|
||
|
parametrize_with_checks,
|
||
|
check_dataframe_column_names_consistency,
|
||
|
check_n_features_in_after_fitting,
|
||
|
check_param_validation,
|
||
|
check_transformer_get_feature_names_out,
|
||
|
check_transformer_get_feature_names_out_pandas,
|
||
|
check_set_output_transform,
|
||
|
check_set_output_transform_pandas,
|
||
|
check_global_ouptut_transform_pandas,
|
||
|
check_get_feature_names_out_error,
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_all_estimator_no_base_class():
|
||
|
# test that all_estimators doesn't find abstract classes.
|
||
|
for name, Estimator in all_estimators():
|
||
|
msg = (
|
||
|
"Base estimators such as {0} should not be included in all_estimators"
|
||
|
).format(name)
|
||
|
assert not name.lower().startswith("base"), msg
|
||
|
|
||
|
|
||
|
def _sample_func(x, y=1):
|
||
|
pass
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"val, expected",
|
||
|
[
|
||
|
(partial(_sample_func, y=1), "_sample_func(y=1)"),
|
||
|
(_sample_func, "_sample_func"),
|
||
|
(partial(_sample_func, "world"), "_sample_func"),
|
||
|
(LogisticRegression(C=2.0), "LogisticRegression(C=2.0)"),
|
||
|
(
|
||
|
LogisticRegression(
|
||
|
random_state=1,
|
||
|
solver="newton-cg",
|
||
|
class_weight="balanced",
|
||
|
warm_start=True,
|
||
|
),
|
||
|
"LogisticRegression(class_weight='balanced',random_state=1,"
|
||
|
"solver='newton-cg',warm_start=True)",
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_get_check_estimator_ids(val, expected):
|
||
|
assert _get_check_estimator_ids(val) == expected
|
||
|
|
||
|
|
||
|
def _tested_estimators(type_filter=None):
|
||
|
for name, Estimator in all_estimators(type_filter=type_filter):
|
||
|
try:
|
||
|
estimator = _construct_instance(Estimator)
|
||
|
except SkipTest:
|
||
|
continue
|
||
|
|
||
|
yield estimator
|
||
|
|
||
|
|
||
|
@parametrize_with_checks(list(_tested_estimators()))
|
||
|
def test_estimators(estimator, check, request):
|
||
|
# Common tests for estimator instances
|
||
|
with ignore_warnings(category=(FutureWarning, ConvergenceWarning, UserWarning)):
|
||
|
_set_checking_parameters(estimator)
|
||
|
check(estimator)
|
||
|
|
||
|
|
||
|
def test_check_estimator_generate_only():
|
||
|
all_instance_gen_checks = check_estimator(LogisticRegression(), generate_only=True)
|
||
|
assert isgenerator(all_instance_gen_checks)
|
||
|
|
||
|
|
||
|
def test_configure():
|
||
|
# Smoke test `python setup.py config` command run at the root of the
|
||
|
# scikit-learn source tree.
|
||
|
# This test requires Cython which is not necessarily there when running
|
||
|
# the tests of an installed version of scikit-learn or when scikit-learn
|
||
|
# is installed in editable mode by pip build isolation enabled.
|
||
|
pytest.importorskip("Cython")
|
||
|
cwd = os.getcwd()
|
||
|
setup_path = os.path.abspath(os.path.join(sklearn.__path__[0], ".."))
|
||
|
setup_filename = os.path.join(setup_path, "setup.py")
|
||
|
if not os.path.exists(setup_filename):
|
||
|
pytest.skip("setup.py not available")
|
||
|
try:
|
||
|
os.chdir(setup_path)
|
||
|
old_argv = sys.argv
|
||
|
sys.argv = ["setup.py", "config"]
|
||
|
|
||
|
with warnings.catch_warnings():
|
||
|
# The configuration spits out warnings when not finding
|
||
|
# Blas/Atlas development headers
|
||
|
warnings.simplefilter("ignore", UserWarning)
|
||
|
with open("setup.py") as f:
|
||
|
exec(f.read(), dict(__name__="__main__"))
|
||
|
finally:
|
||
|
sys.argv = old_argv
|
||
|
os.chdir(cwd)
|
||
|
|
||
|
|
||
|
def _tested_linear_classifiers():
|
||
|
classifiers = all_estimators(type_filter="classifier")
|
||
|
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
for name, clazz in classifiers:
|
||
|
required_parameters = getattr(clazz, "_required_parameters", [])
|
||
|
if len(required_parameters):
|
||
|
# FIXME
|
||
|
continue
|
||
|
|
||
|
if "class_weight" in clazz().get_params().keys() and issubclass(
|
||
|
clazz, LinearClassifierMixin
|
||
|
):
|
||
|
yield name, clazz
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("name, Classifier", _tested_linear_classifiers())
|
||
|
def test_class_weight_balanced_linear_classifiers(name, Classifier):
|
||
|
check_class_weight_balanced_linear_classifier(name, Classifier)
|
||
|
|
||
|
|
||
|
@ignore_warnings
|
||
|
def test_import_all_consistency():
|
||
|
# Smoke test to check that any name in a __all__ list is actually defined
|
||
|
# in the namespace of the module or package.
|
||
|
pkgs = pkgutil.walk_packages(
|
||
|
path=sklearn.__path__, prefix="sklearn.", onerror=lambda _: None
|
||
|
)
|
||
|
submods = [modname for _, modname, _ in pkgs]
|
||
|
for modname in submods + ["sklearn"]:
|
||
|
if ".tests." in modname:
|
||
|
continue
|
||
|
if IS_PYPY and (
|
||
|
"_svmlight_format_io" in modname
|
||
|
or "feature_extraction._hashing_fast" in modname
|
||
|
):
|
||
|
continue
|
||
|
package = __import__(modname, fromlist="dummy")
|
||
|
for name in getattr(package, "__all__", ()):
|
||
|
assert hasattr(package, name), "Module '{0}' has no attribute '{1}'".format(
|
||
|
modname, name
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_root_import_all_completeness():
|
||
|
EXCEPTIONS = ("utils", "tests", "base", "setup", "conftest")
|
||
|
for _, modname, _ in pkgutil.walk_packages(
|
||
|
path=sklearn.__path__, onerror=lambda _: None
|
||
|
):
|
||
|
if "." in modname or modname.startswith("_") or modname in EXCEPTIONS:
|
||
|
continue
|
||
|
assert modname in sklearn.__all__
|
||
|
|
||
|
|
||
|
def test_all_tests_are_importable():
|
||
|
# Ensure that for each contentful subpackage, there is a test directory
|
||
|
# within it that is also a subpackage (i.e. a directory with __init__.py)
|
||
|
|
||
|
HAS_TESTS_EXCEPTIONS = re.compile(
|
||
|
r"""(?x)
|
||
|
\.externals(\.|$)|
|
||
|
\.tests(\.|$)|
|
||
|
\._
|
||
|
"""
|
||
|
)
|
||
|
resource_modules = {
|
||
|
"sklearn.datasets.data",
|
||
|
"sklearn.datasets.descr",
|
||
|
"sklearn.datasets.images",
|
||
|
}
|
||
|
lookup = {
|
||
|
name: ispkg
|
||
|
for _, name, ispkg in pkgutil.walk_packages(sklearn.__path__, prefix="sklearn.")
|
||
|
}
|
||
|
missing_tests = [
|
||
|
name
|
||
|
for name, ispkg in lookup.items()
|
||
|
if ispkg
|
||
|
and name not in resource_modules
|
||
|
and not HAS_TESTS_EXCEPTIONS.search(name)
|
||
|
and name + ".tests" not in lookup
|
||
|
]
|
||
|
assert missing_tests == [], (
|
||
|
"{0} do not have `tests` subpackages. "
|
||
|
"Perhaps they require "
|
||
|
"__init__.py or an add_subpackage directive "
|
||
|
"in the parent "
|
||
|
"setup.py".format(missing_tests)
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_class_support_removed():
|
||
|
# Make sure passing classes to check_estimator or parametrize_with_checks
|
||
|
# raises an error
|
||
|
|
||
|
msg = "Passing a class was deprecated.* isn't supported anymore"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
check_estimator(LogisticRegression)
|
||
|
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
parametrize_with_checks([LogisticRegression])
|
||
|
|
||
|
|
||
|
def _generate_search_cv_instances():
|
||
|
for SearchCV, (Estimator, param_grid) in product(
|
||
|
[
|
||
|
GridSearchCV,
|
||
|
HalvingGridSearchCV,
|
||
|
RandomizedSearchCV,
|
||
|
HalvingGridSearchCV,
|
||
|
],
|
||
|
[
|
||
|
(Ridge, {"alpha": [0.1, 1.0]}),
|
||
|
(LogisticRegression, {"C": [0.1, 1.0]}),
|
||
|
],
|
||
|
):
|
||
|
init_params = signature(SearchCV).parameters
|
||
|
extra_params = (
|
||
|
{"min_resources": "smallest"} if "min_resources" in init_params else {}
|
||
|
)
|
||
|
search_cv = SearchCV(Estimator(), param_grid, cv=2, **extra_params)
|
||
|
set_random_state(search_cv)
|
||
|
yield search_cv
|
||
|
|
||
|
for SearchCV, (Estimator, param_grid) in product(
|
||
|
[
|
||
|
GridSearchCV,
|
||
|
HalvingGridSearchCV,
|
||
|
RandomizedSearchCV,
|
||
|
HalvingRandomSearchCV,
|
||
|
],
|
||
|
[
|
||
|
(Ridge, {"ridge__alpha": [0.1, 1.0]}),
|
||
|
(LogisticRegression, {"logisticregression__C": [0.1, 1.0]}),
|
||
|
],
|
||
|
):
|
||
|
init_params = signature(SearchCV).parameters
|
||
|
extra_params = (
|
||
|
{"min_resources": "smallest"} if "min_resources" in init_params else {}
|
||
|
)
|
||
|
search_cv = SearchCV(
|
||
|
make_pipeline(PCA(), Estimator()), param_grid, cv=2, **extra_params
|
||
|
).set_params(error_score="raise")
|
||
|
set_random_state(search_cv)
|
||
|
yield search_cv
|
||
|
|
||
|
|
||
|
@parametrize_with_checks(list(_generate_search_cv_instances()))
|
||
|
def test_search_cv(estimator, check, request):
|
||
|
# Common tests for SearchCV instances
|
||
|
# We have a separate test because those meta-estimators can accept a
|
||
|
# wide range of base estimators (classifiers, regressors, pipelines)
|
||
|
with ignore_warnings(
|
||
|
category=(
|
||
|
FutureWarning,
|
||
|
ConvergenceWarning,
|
||
|
UserWarning,
|
||
|
FitFailedWarning,
|
||
|
)
|
||
|
):
|
||
|
check(estimator)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"estimator", _tested_estimators(), ids=_get_check_estimator_ids
|
||
|
)
|
||
|
def test_valid_tag_types(estimator):
|
||
|
"""Check that estimator tags are valid."""
|
||
|
tags = _safe_tags(estimator)
|
||
|
|
||
|
for name, tag in tags.items():
|
||
|
correct_tags = type(_DEFAULT_TAGS[name])
|
||
|
if name == "_xfail_checks":
|
||
|
# _xfail_checks can be a dictionary
|
||
|
correct_tags = (correct_tags, dict)
|
||
|
assert isinstance(tag, correct_tags)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"estimator", _tested_estimators(), ids=_get_check_estimator_ids
|
||
|
)
|
||
|
def test_check_n_features_in_after_fitting(estimator):
|
||
|
_set_checking_parameters(estimator)
|
||
|
check_n_features_in_after_fitting(estimator.__class__.__name__, estimator)
|
||
|
|
||
|
|
||
|
def _estimators_that_predict_in_fit():
|
||
|
for estimator in _tested_estimators():
|
||
|
est_params = set(estimator.get_params())
|
||
|
if "oob_score" in est_params:
|
||
|
yield estimator.set_params(oob_score=True, bootstrap=True)
|
||
|
elif "early_stopping" in est_params:
|
||
|
est = estimator.set_params(early_stopping=True, n_iter_no_change=1)
|
||
|
if est.__class__.__name__ in {"MLPClassifier", "MLPRegressor"}:
|
||
|
# TODO: FIX MLP to not check validation set during MLP
|
||
|
yield pytest.param(
|
||
|
est, marks=pytest.mark.xfail(msg="MLP still validates in fit")
|
||
|
)
|
||
|
else:
|
||
|
yield est
|
||
|
elif "n_iter_no_change" in est_params:
|
||
|
yield estimator.set_params(n_iter_no_change=1)
|
||
|
|
||
|
|
||
|
# NOTE: When running `check_dataframe_column_names_consistency` on a meta-estimator that
|
||
|
# delegates validation to a base estimator, the check is testing that the base estimator
|
||
|
# is checking for column name consistency.
|
||
|
column_name_estimators = list(
|
||
|
chain(
|
||
|
_tested_estimators(),
|
||
|
[make_pipeline(LogisticRegression(C=1))],
|
||
|
list(_generate_search_cv_instances()),
|
||
|
_estimators_that_predict_in_fit(),
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"estimator", column_name_estimators, ids=_get_check_estimator_ids
|
||
|
)
|
||
|
def test_pandas_column_name_consistency(estimator):
|
||
|
_set_checking_parameters(estimator)
|
||
|
with ignore_warnings(category=(FutureWarning)):
|
||
|
with warnings.catch_warnings(record=True) as record:
|
||
|
check_dataframe_column_names_consistency(
|
||
|
estimator.__class__.__name__, estimator
|
||
|
)
|
||
|
for warning in record:
|
||
|
assert "was fitted without feature names" not in str(warning.message)
|
||
|
|
||
|
|
||
|
# TODO: As more modules support get_feature_names_out they should be removed
|
||
|
# from this list to be tested
|
||
|
GET_FEATURES_OUT_MODULES_TO_IGNORE = [
|
||
|
"ensemble",
|
||
|
"kernel_approximation",
|
||
|
]
|
||
|
|
||
|
|
||
|
def _include_in_get_feature_names_out_check(transformer):
|
||
|
if hasattr(transformer, "get_feature_names_out"):
|
||
|
return True
|
||
|
module = transformer.__module__.split(".")[1]
|
||
|
return module not in GET_FEATURES_OUT_MODULES_TO_IGNORE
|
||
|
|
||
|
|
||
|
GET_FEATURES_OUT_ESTIMATORS = [
|
||
|
est
|
||
|
for est in _tested_estimators("transformer")
|
||
|
if _include_in_get_feature_names_out_check(est)
|
||
|
]
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"transformer", GET_FEATURES_OUT_ESTIMATORS, ids=_get_check_estimator_ids
|
||
|
)
|
||
|
def test_transformers_get_feature_names_out(transformer):
|
||
|
_set_checking_parameters(transformer)
|
||
|
|
||
|
with ignore_warnings(category=(FutureWarning)):
|
||
|
check_transformer_get_feature_names_out(
|
||
|
transformer.__class__.__name__, transformer
|
||
|
)
|
||
|
check_transformer_get_feature_names_out_pandas(
|
||
|
transformer.__class__.__name__, transformer
|
||
|
)
|
||
|
|
||
|
|
||
|
ESTIMATORS_WITH_GET_FEATURE_NAMES_OUT = [
|
||
|
est for est in _tested_estimators() if hasattr(est, "get_feature_names_out")
|
||
|
]
|
||
|
|
||
|
WHITELISTED_FAILING_ESTIMATORS = [
|
||
|
"AdditiveChi2Sampler",
|
||
|
"Binarizer",
|
||
|
"DictVectorizer",
|
||
|
"GaussianRandomProjection",
|
||
|
"GenericUnivariateSelect",
|
||
|
"IterativeImputer",
|
||
|
"IsotonicRegression",
|
||
|
"KBinsDiscretizer",
|
||
|
"KNNImputer",
|
||
|
"MaxAbsScaler",
|
||
|
"MinMaxScaler",
|
||
|
"MissingIndicator",
|
||
|
"Normalizer",
|
||
|
"OrdinalEncoder",
|
||
|
"PowerTransformer",
|
||
|
"QuantileTransformer",
|
||
|
"RFE",
|
||
|
"RFECV",
|
||
|
"RobustScaler",
|
||
|
"SelectFdr",
|
||
|
"SelectFpr",
|
||
|
"SelectFromModel",
|
||
|
"SelectFwe",
|
||
|
"SelectKBest",
|
||
|
"SelectPercentile",
|
||
|
"SequentialFeatureSelector",
|
||
|
"SimpleImputer",
|
||
|
"SparseRandomProjection",
|
||
|
"SplineTransformer",
|
||
|
"StackingClassifier",
|
||
|
"StackingRegressor",
|
||
|
"StandardScaler",
|
||
|
"TfidfTransformer",
|
||
|
"VarianceThreshold",
|
||
|
"VotingClassifier",
|
||
|
"VotingRegressor",
|
||
|
]
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"estimator", ESTIMATORS_WITH_GET_FEATURE_NAMES_OUT, ids=_get_check_estimator_ids
|
||
|
)
|
||
|
def test_estimators_get_feature_names_out_error(estimator):
|
||
|
estimator_name = estimator.__class__.__name__
|
||
|
if estimator_name in WHITELISTED_FAILING_ESTIMATORS:
|
||
|
return pytest.xfail(
|
||
|
reason=f"{estimator_name} is not failing with a consistent NotFittedError"
|
||
|
)
|
||
|
_set_checking_parameters(estimator)
|
||
|
check_get_feature_names_out_error(estimator_name, estimator)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"Estimator",
|
||
|
[est for name, est in all_estimators()],
|
||
|
)
|
||
|
def test_estimators_do_not_raise_errors_in_init_or_set_params(Estimator):
|
||
|
"""Check that init or set_param does not raise errors."""
|
||
|
params = signature(Estimator).parameters
|
||
|
|
||
|
smoke_test_values = [-1, 3.0, "helloworld", np.array([1.0, 4.0]), [1], {}, []]
|
||
|
for value in smoke_test_values:
|
||
|
new_params = {key: value for key in params}
|
||
|
|
||
|
# Does not raise
|
||
|
est = Estimator(**new_params)
|
||
|
|
||
|
# Also do does not raise
|
||
|
est.set_params(**new_params)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"estimator", _tested_estimators(), ids=_get_check_estimator_ids
|
||
|
)
|
||
|
def test_check_param_validation(estimator):
|
||
|
name = estimator.__class__.__name__
|
||
|
_set_checking_parameters(estimator)
|
||
|
check_param_validation(name, estimator)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"Estimator",
|
||
|
[
|
||
|
AffinityPropagation,
|
||
|
Birch,
|
||
|
MeanShift,
|
||
|
KNeighborsClassifier,
|
||
|
KNeighborsRegressor,
|
||
|
RadiusNeighborsClassifier,
|
||
|
RadiusNeighborsRegressor,
|
||
|
LabelPropagation,
|
||
|
LabelSpreading,
|
||
|
OPTICS,
|
||
|
SpectralClustering,
|
||
|
LocalOutlierFactor,
|
||
|
LocallyLinearEmbedding,
|
||
|
Isomap,
|
||
|
TSNE,
|
||
|
],
|
||
|
)
|
||
|
def test_f_contiguous_array_estimator(Estimator):
|
||
|
# Non-regression test for:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/23988
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/24013
|
||
|
|
||
|
X, _ = make_blobs(n_samples=80, n_features=4, random_state=0)
|
||
|
X = np.asfortranarray(X)
|
||
|
y = np.round(X[:, 0])
|
||
|
|
||
|
est = Estimator()
|
||
|
est.fit(X, y)
|
||
|
|
||
|
if hasattr(est, "transform"):
|
||
|
est.transform(X)
|
||
|
|
||
|
if hasattr(est, "predict"):
|
||
|
est.predict(X)
|
||
|
|
||
|
|
||
|
SET_OUTPUT_ESTIMATORS = list(
|
||
|
chain(
|
||
|
_tested_estimators("transformer"),
|
||
|
[
|
||
|
make_pipeline(StandardScaler(), MinMaxScaler()),
|
||
|
OneHotEncoder(sparse_output=False),
|
||
|
FunctionTransformer(feature_names_out="one-to-one"),
|
||
|
],
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"estimator", SET_OUTPUT_ESTIMATORS, ids=_get_check_estimator_ids
|
||
|
)
|
||
|
def test_set_output_transform(estimator):
|
||
|
name = estimator.__class__.__name__
|
||
|
if not hasattr(estimator, "set_output"):
|
||
|
pytest.skip(
|
||
|
f"Skipping check_set_output_transform for {name}: Does not support"
|
||
|
" set_output API"
|
||
|
)
|
||
|
_set_checking_parameters(estimator)
|
||
|
with ignore_warnings(category=(FutureWarning)):
|
||
|
check_set_output_transform(estimator.__class__.__name__, estimator)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"estimator", SET_OUTPUT_ESTIMATORS, ids=_get_check_estimator_ids
|
||
|
)
|
||
|
def test_set_output_transform_pandas(estimator):
|
||
|
name = estimator.__class__.__name__
|
||
|
if not hasattr(estimator, "set_output"):
|
||
|
pytest.skip(
|
||
|
f"Skipping check_set_output_transform_pandas for {name}: Does not support"
|
||
|
" set_output API yet"
|
||
|
)
|
||
|
_set_checking_parameters(estimator)
|
||
|
with ignore_warnings(category=(FutureWarning)):
|
||
|
check_set_output_transform_pandas(estimator.__class__.__name__, estimator)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"estimator", SET_OUTPUT_ESTIMATORS, ids=_get_check_estimator_ids
|
||
|
)
|
||
|
def test_global_output_transform_pandas(estimator):
|
||
|
name = estimator.__class__.__name__
|
||
|
if not hasattr(estimator, "set_output"):
|
||
|
pytest.skip(
|
||
|
f"Skipping check_global_ouptut_transform_pandas for {name}: Does not"
|
||
|
" support set_output API yet"
|
||
|
)
|
||
|
_set_checking_parameters(estimator)
|
||
|
with ignore_warnings(category=(FutureWarning)):
|
||
|
check_global_ouptut_transform_pandas(estimator.__class__.__name__, estimator)
|