68 lines
2.0 KiB
Python
68 lines
2.0 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from pathlib import Path
|
||
|
from typing import (
|
||
|
TYPE_CHECKING,
|
||
|
Sequence,
|
||
|
)
|
||
|
|
||
|
from pandas._libs import lib
|
||
|
from pandas.compat._optional import import_optional_dependency
|
||
|
from pandas.util._validators import check_dtype_backend
|
||
|
|
||
|
from pandas.core.dtypes.inference import is_list_like
|
||
|
|
||
|
from pandas.io.common import stringify_path
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from pandas._typing import DtypeBackend
|
||
|
|
||
|
from pandas import DataFrame
|
||
|
|
||
|
|
||
|
def read_spss(
|
||
|
path: str | Path,
|
||
|
usecols: Sequence[str] | None = None,
|
||
|
convert_categoricals: bool = True,
|
||
|
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
|
||
|
) -> DataFrame:
|
||
|
"""
|
||
|
Load an SPSS file from the file path, returning a DataFrame.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
path : str or Path
|
||
|
File path.
|
||
|
usecols : list-like, optional
|
||
|
Return a subset of the columns. If None, return all columns.
|
||
|
convert_categoricals : bool, default is True
|
||
|
Convert categorical columns into pd.Categorical.
|
||
|
dtype_backend : {"numpy_nullable", "pyarrow"}, defaults to NumPy backed DataFrames
|
||
|
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy
|
||
|
arrays, nullable dtypes are used for all dtypes that have a nullable
|
||
|
implementation when "numpy_nullable" is set, pyarrow is used for all
|
||
|
dtypes if "pyarrow" is set.
|
||
|
|
||
|
The dtype_backends are still experimential.
|
||
|
|
||
|
.. versionadded:: 2.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame
|
||
|
"""
|
||
|
pyreadstat = import_optional_dependency("pyreadstat")
|
||
|
check_dtype_backend(dtype_backend)
|
||
|
|
||
|
if usecols is not None:
|
||
|
if not is_list_like(usecols):
|
||
|
raise TypeError("usecols must be list-like.")
|
||
|
usecols = list(usecols) # pyreadstat requires a list
|
||
|
|
||
|
df, _ = pyreadstat.read_sav(
|
||
|
stringify_path(path), usecols=usecols, apply_value_formats=convert_categoricals
|
||
|
)
|
||
|
if dtype_backend is not lib.no_default:
|
||
|
df = df.convert_dtypes(dtype_backend=dtype_backend)
|
||
|
return df
|