Inzynierka_Gwiazdy/machine_learning/Lib/site-packages/pandas/tests/test_take.py

307 lines
11 KiB
Python
Raw Normal View History

2023-09-20 19:46:58 +02:00
from datetime import datetime
import re
import numpy as np
import pytest
from pandas._libs import iNaT
import pandas._testing as tm
import pandas.core.algorithms as algos
@pytest.fixture(
params=[
(np.int8, np.int16(127), np.int8),
(np.int8, np.int16(128), np.int16),
(np.int32, 1, np.int32),
(np.int32, 2.0, np.float64),
(np.int32, 3.0 + 4.0j, np.complex128),
(np.int32, True, np.object_),
(np.int32, "", np.object_),
(np.float64, 1, np.float64),
(np.float64, 2.0, np.float64),
(np.float64, 3.0 + 4.0j, np.complex128),
(np.float64, True, np.object_),
(np.float64, "", np.object_),
(np.complex128, 1, np.complex128),
(np.complex128, 2.0, np.complex128),
(np.complex128, 3.0 + 4.0j, np.complex128),
(np.complex128, True, np.object_),
(np.complex128, "", np.object_),
(np.bool_, 1, np.object_),
(np.bool_, 2.0, np.object_),
(np.bool_, 3.0 + 4.0j, np.object_),
(np.bool_, True, np.bool_),
(np.bool_, "", np.object_),
]
)
def dtype_fill_out_dtype(request):
return request.param
class TestTake:
# Standard incompatible fill error.
fill_error = re.compile("Incompatible type for fill_value")
def test_1d_fill_nonna(self, dtype_fill_out_dtype):
dtype, fill_value, out_dtype = dtype_fill_out_dtype
data = np.random.randint(0, 2, 4).astype(dtype)
indexer = [2, 1, 0, -1]
result = algos.take_nd(data, indexer, fill_value=fill_value)
assert (result[[0, 1, 2]] == data[[2, 1, 0]]).all()
assert result[3] == fill_value
assert result.dtype == out_dtype
indexer = [2, 1, 0, 1]
result = algos.take_nd(data, indexer, fill_value=fill_value)
assert (result[[0, 1, 2, 3]] == data[indexer]).all()
assert result.dtype == dtype
def test_2d_fill_nonna(self, dtype_fill_out_dtype):
dtype, fill_value, out_dtype = dtype_fill_out_dtype
data = np.random.randint(0, 2, (5, 3)).astype(dtype)
indexer = [2, 1, 0, -1]
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value)
assert (result[[0, 1, 2], :] == data[[2, 1, 0], :]).all()
assert (result[3, :] == fill_value).all()
assert result.dtype == out_dtype
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value)
assert (result[:, [0, 1, 2]] == data[:, [2, 1, 0]]).all()
assert (result[:, 3] == fill_value).all()
assert result.dtype == out_dtype
indexer = [2, 1, 0, 1]
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value)
assert (result[[0, 1, 2, 3], :] == data[indexer, :]).all()
assert result.dtype == dtype
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value)
assert (result[:, [0, 1, 2, 3]] == data[:, indexer]).all()
assert result.dtype == dtype
def test_3d_fill_nonna(self, dtype_fill_out_dtype):
dtype, fill_value, out_dtype = dtype_fill_out_dtype
data = np.random.randint(0, 2, (5, 4, 3)).astype(dtype)
indexer = [2, 1, 0, -1]
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value)
assert (result[[0, 1, 2], :, :] == data[[2, 1, 0], :, :]).all()
assert (result[3, :, :] == fill_value).all()
assert result.dtype == out_dtype
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value)
assert (result[:, [0, 1, 2], :] == data[:, [2, 1, 0], :]).all()
assert (result[:, 3, :] == fill_value).all()
assert result.dtype == out_dtype
result = algos.take_nd(data, indexer, axis=2, fill_value=fill_value)
assert (result[:, :, [0, 1, 2]] == data[:, :, [2, 1, 0]]).all()
assert (result[:, :, 3] == fill_value).all()
assert result.dtype == out_dtype
indexer = [2, 1, 0, 1]
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value)
assert (result[[0, 1, 2, 3], :, :] == data[indexer, :, :]).all()
assert result.dtype == dtype
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value)
assert (result[:, [0, 1, 2, 3], :] == data[:, indexer, :]).all()
assert result.dtype == dtype
result = algos.take_nd(data, indexer, axis=2, fill_value=fill_value)
assert (result[:, :, [0, 1, 2, 3]] == data[:, :, indexer]).all()
assert result.dtype == dtype
def test_1d_other_dtypes(self):
arr = np.random.randn(10).astype(np.float32)
indexer = [1, 2, 3, -1]
result = algos.take_nd(arr, indexer)
expected = arr.take(indexer)
expected[-1] = np.nan
tm.assert_almost_equal(result, expected)
def test_2d_other_dtypes(self):
arr = np.random.randn(10, 5).astype(np.float32)
indexer = [1, 2, 3, -1]
# axis=0
result = algos.take_nd(arr, indexer, axis=0)
expected = arr.take(indexer, axis=0)
expected[-1] = np.nan
tm.assert_almost_equal(result, expected)
# axis=1
result = algos.take_nd(arr, indexer, axis=1)
expected = arr.take(indexer, axis=1)
expected[:, -1] = np.nan
tm.assert_almost_equal(result, expected)
def test_1d_bool(self):
arr = np.array([0, 1, 0], dtype=bool)
result = algos.take_nd(arr, [0, 2, 2, 1])
expected = arr.take([0, 2, 2, 1])
tm.assert_numpy_array_equal(result, expected)
result = algos.take_nd(arr, [0, 2, -1])
assert result.dtype == np.object_
def test_2d_bool(self):
arr = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 1]], dtype=bool)
result = algos.take_nd(arr, [0, 2, 2, 1])
expected = arr.take([0, 2, 2, 1], axis=0)
tm.assert_numpy_array_equal(result, expected)
result = algos.take_nd(arr, [0, 2, 2, 1], axis=1)
expected = arr.take([0, 2, 2, 1], axis=1)
tm.assert_numpy_array_equal(result, expected)
result = algos.take_nd(arr, [0, 2, -1])
assert result.dtype == np.object_
def test_2d_float32(self):
arr = np.random.randn(4, 3).astype(np.float32)
indexer = [0, 2, -1, 1, -1]
# axis=0
result = algos.take_nd(arr, indexer, axis=0)
expected = arr.take(indexer, axis=0)
expected[[2, 4], :] = np.nan
tm.assert_almost_equal(result, expected)
# axis=1
result = algos.take_nd(arr, indexer, axis=1)
expected = arr.take(indexer, axis=1)
expected[:, [2, 4]] = np.nan
tm.assert_almost_equal(result, expected)
def test_2d_datetime64(self):
# 2005/01/01 - 2006/01/01
arr = np.random.randint(11_045_376, 11_360_736, (5, 3)) * 100_000_000_000
arr = arr.view(dtype="datetime64[ns]")
indexer = [0, 2, -1, 1, -1]
# axis=0
result = algos.take_nd(arr, indexer, axis=0)
expected = arr.take(indexer, axis=0)
expected.view(np.int64)[[2, 4], :] = iNaT
tm.assert_almost_equal(result, expected)
result = algos.take_nd(arr, indexer, axis=0, fill_value=datetime(2007, 1, 1))
expected = arr.take(indexer, axis=0)
expected[[2, 4], :] = datetime(2007, 1, 1)
tm.assert_almost_equal(result, expected)
# axis=1
result = algos.take_nd(arr, indexer, axis=1)
expected = arr.take(indexer, axis=1)
expected.view(np.int64)[:, [2, 4]] = iNaT
tm.assert_almost_equal(result, expected)
result = algos.take_nd(arr, indexer, axis=1, fill_value=datetime(2007, 1, 1))
expected = arr.take(indexer, axis=1)
expected[:, [2, 4]] = datetime(2007, 1, 1)
tm.assert_almost_equal(result, expected)
def test_take_axis_0(self):
arr = np.arange(12).reshape(4, 3)
result = algos.take(arr, [0, -1])
expected = np.array([[0, 1, 2], [9, 10, 11]])
tm.assert_numpy_array_equal(result, expected)
# allow_fill=True
result = algos.take(arr, [0, -1], allow_fill=True, fill_value=0)
expected = np.array([[0, 1, 2], [0, 0, 0]])
tm.assert_numpy_array_equal(result, expected)
def test_take_axis_1(self):
arr = np.arange(12).reshape(4, 3)
result = algos.take(arr, [0, -1], axis=1)
expected = np.array([[0, 2], [3, 5], [6, 8], [9, 11]])
tm.assert_numpy_array_equal(result, expected)
# allow_fill=True
result = algos.take(arr, [0, -1], axis=1, allow_fill=True, fill_value=0)
expected = np.array([[0, 0], [3, 0], [6, 0], [9, 0]])
tm.assert_numpy_array_equal(result, expected)
# GH#26976 make sure we validate along the correct axis
with pytest.raises(IndexError, match="indices are out-of-bounds"):
algos.take(arr, [0, 3], axis=1, allow_fill=True, fill_value=0)
def test_take_non_hashable_fill_value(self):
arr = np.array([1, 2, 3])
indexer = np.array([1, -1])
with pytest.raises(ValueError, match="fill_value must be a scalar"):
algos.take(arr, indexer, allow_fill=True, fill_value=[1])
# with object dtype it is allowed
arr = np.array([1, 2, 3], dtype=object)
result = algos.take(arr, indexer, allow_fill=True, fill_value=[1])
expected = np.array([2, [1]], dtype=object)
tm.assert_numpy_array_equal(result, expected)
class TestExtensionTake:
# The take method found in pd.api.extensions
def test_bounds_check_large(self):
arr = np.array([1, 2])
msg = "indices are out-of-bounds"
with pytest.raises(IndexError, match=msg):
algos.take(arr, [2, 3], allow_fill=True)
msg = "index 2 is out of bounds for( axis 0 with)? size 2"
with pytest.raises(IndexError, match=msg):
algos.take(arr, [2, 3], allow_fill=False)
def test_bounds_check_small(self):
arr = np.array([1, 2, 3], dtype=np.int64)
indexer = [0, -1, -2]
msg = r"'indices' contains values less than allowed \(-2 < -1\)"
with pytest.raises(ValueError, match=msg):
algos.take(arr, indexer, allow_fill=True)
result = algos.take(arr, indexer)
expected = np.array([1, 3, 2], dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("allow_fill", [True, False])
def test_take_empty(self, allow_fill):
arr = np.array([], dtype=np.int64)
# empty take is ok
result = algos.take(arr, [], allow_fill=allow_fill)
tm.assert_numpy_array_equal(arr, result)
msg = "|".join(
[
"cannot do a non-empty take from an empty axes.",
"indices are out-of-bounds",
]
)
with pytest.raises(IndexError, match=msg):
algos.take(arr, [0], allow_fill=allow_fill)
def test_take_na_empty(self):
result = algos.take(np.array([]), [-1, -1], allow_fill=True, fill_value=0.0)
expected = np.array([0.0, 0.0])
tm.assert_numpy_array_equal(result, expected)
def test_take_coerces_list(self):
arr = [1, 2, 3]
result = algos.take(arr, [0, 0])
expected = np.array([1, 1])
tm.assert_numpy_array_equal(result, expected)