Inzynierka_Gwiazdy/machine_learning/Lib/site-packages/sklearn/manifold/_isomap.py

429 lines
15 KiB
Python
Raw Normal View History

2023-09-20 19:46:58 +02:00
"""Isomap for manifold learning"""
# Author: Jake Vanderplas -- <vanderplas@astro.washington.edu>
# License: BSD 3 clause (C) 2011
import warnings
import numpy as np
from numbers import Integral, Real
from scipy.sparse import issparse
from scipy.sparse.csgraph import shortest_path
from scipy.sparse.csgraph import connected_components
from ..base import BaseEstimator, TransformerMixin, ClassNamePrefixFeaturesOutMixin
from ..neighbors import NearestNeighbors, kneighbors_graph
from ..neighbors import radius_neighbors_graph
from ..utils.validation import check_is_fitted
from ..decomposition import KernelPCA
from ..preprocessing import KernelCenterer
from ..utils.graph import _fix_connected_components
from ..utils._param_validation import Interval, StrOptions
from ..metrics.pairwise import _VALID_METRICS
class Isomap(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
"""Isomap Embedding.
Non-linear dimensionality reduction through Isometric Mapping
Read more in the :ref:`User Guide <isomap>`.
Parameters
----------
n_neighbors : int or None, default=5
Number of neighbors to consider for each point. If `n_neighbors` is an int,
then `radius` must be `None`.
radius : float or None, default=None
Limiting distance of neighbors to return. If `radius` is a float,
then `n_neighbors` must be set to `None`.
.. versionadded:: 1.1
n_components : int, default=2
Number of coordinates for the manifold.
eigen_solver : {'auto', 'arpack', 'dense'}, default='auto'
'auto' : Attempt to choose the most efficient solver
for the given problem.
'arpack' : Use Arnoldi decomposition to find the eigenvalues
and eigenvectors.
'dense' : Use a direct solver (i.e. LAPACK)
for the eigenvalue decomposition.
tol : float, default=0
Convergence tolerance passed to arpack or lobpcg.
not used if eigen_solver == 'dense'.
max_iter : int, default=None
Maximum number of iterations for the arpack solver.
not used if eigen_solver == 'dense'.
path_method : {'auto', 'FW', 'D'}, default='auto'
Method to use in finding shortest path.
'auto' : attempt to choose the best algorithm automatically.
'FW' : Floyd-Warshall algorithm.
'D' : Dijkstra's algorithm.
neighbors_algorithm : {'auto', 'brute', 'kd_tree', 'ball_tree'}, \
default='auto'
Algorithm to use for nearest neighbors search,
passed to neighbors.NearestNeighbors instance.
n_jobs : int or None, default=None
The number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
metric : str, or callable, default="minkowski"
The metric to use when calculating distance between instances in a
feature array. If metric is a string or callable, it must be one of
the options allowed by :func:`sklearn.metrics.pairwise_distances` for
its metric parameter.
If metric is "precomputed", X is assumed to be a distance matrix and
must be square. X may be a :term:`Glossary <sparse graph>`.
.. versionadded:: 0.22
p : int, default=2
Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
.. versionadded:: 0.22
metric_params : dict, default=None
Additional keyword arguments for the metric function.
.. versionadded:: 0.22
Attributes
----------
embedding_ : array-like, shape (n_samples, n_components)
Stores the embedding vectors.
kernel_pca_ : object
:class:`~sklearn.decomposition.KernelPCA` object used to implement the
embedding.
nbrs_ : sklearn.neighbors.NearestNeighbors instance
Stores nearest neighbors instance, including BallTree or KDtree
if applicable.
dist_matrix_ : array-like, shape (n_samples, n_samples)
Stores the geodesic distance matrix of training data.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
sklearn.decomposition.PCA : Principal component analysis that is a linear
dimensionality reduction method.
sklearn.decomposition.KernelPCA : Non-linear dimensionality reduction using
kernels and PCA.
MDS : Manifold learning using multidimensional scaling.
TSNE : T-distributed Stochastic Neighbor Embedding.
LocallyLinearEmbedding : Manifold learning using Locally Linear Embedding.
SpectralEmbedding : Spectral embedding for non-linear dimensionality.
References
----------
.. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric
framework for nonlinear dimensionality reduction. Science 290 (5500)
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.manifold import Isomap
>>> X, _ = load_digits(return_X_y=True)
>>> X.shape
(1797, 64)
>>> embedding = Isomap(n_components=2)
>>> X_transformed = embedding.fit_transform(X[:100])
>>> X_transformed.shape
(100, 2)
"""
_parameter_constraints: dict = {
"n_neighbors": [Interval(Integral, 1, None, closed="left"), None],
"radius": [Interval(Real, 0, None, closed="both"), None],
"n_components": [Interval(Integral, 1, None, closed="left")],
"eigen_solver": [StrOptions({"auto", "arpack", "dense"})],
"tol": [Interval(Real, 0, None, closed="left")],
"max_iter": [Interval(Integral, 1, None, closed="left"), None],
"path_method": [StrOptions({"auto", "FW", "D"})],
"neighbors_algorithm": [StrOptions({"auto", "brute", "kd_tree", "ball_tree"})],
"n_jobs": [Integral, None],
"p": [Interval(Real, 1, None, closed="left")],
"metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable],
"metric_params": [dict, None],
}
def __init__(
self,
*,
n_neighbors=5,
radius=None,
n_components=2,
eigen_solver="auto",
tol=0,
max_iter=None,
path_method="auto",
neighbors_algorithm="auto",
n_jobs=None,
metric="minkowski",
p=2,
metric_params=None,
):
self.n_neighbors = n_neighbors
self.radius = radius
self.n_components = n_components
self.eigen_solver = eigen_solver
self.tol = tol
self.max_iter = max_iter
self.path_method = path_method
self.neighbors_algorithm = neighbors_algorithm
self.n_jobs = n_jobs
self.metric = metric
self.p = p
self.metric_params = metric_params
def _fit_transform(self, X):
if self.n_neighbors is not None and self.radius is not None:
raise ValueError(
"Both n_neighbors and radius are provided. Use"
f" Isomap(radius={self.radius}, n_neighbors=None) if intended to use"
" radius-based neighbors"
)
self.nbrs_ = NearestNeighbors(
n_neighbors=self.n_neighbors,
radius=self.radius,
algorithm=self.neighbors_algorithm,
metric=self.metric,
p=self.p,
metric_params=self.metric_params,
n_jobs=self.n_jobs,
)
self.nbrs_.fit(X)
self.n_features_in_ = self.nbrs_.n_features_in_
if hasattr(self.nbrs_, "feature_names_in_"):
self.feature_names_in_ = self.nbrs_.feature_names_in_
self.kernel_pca_ = KernelPCA(
n_components=self.n_components,
kernel="precomputed",
eigen_solver=self.eigen_solver,
tol=self.tol,
max_iter=self.max_iter,
n_jobs=self.n_jobs,
)
if self.n_neighbors is not None:
nbg = kneighbors_graph(
self.nbrs_,
self.n_neighbors,
metric=self.metric,
p=self.p,
metric_params=self.metric_params,
mode="distance",
n_jobs=self.n_jobs,
)
else:
nbg = radius_neighbors_graph(
self.nbrs_,
radius=self.radius,
metric=self.metric,
p=self.p,
metric_params=self.metric_params,
mode="distance",
n_jobs=self.n_jobs,
)
# Compute the number of connected components, and connect the different
# components to be able to compute a shortest path between all pairs
# of samples in the graph.
# Similar fix to cluster._agglomerative._fix_connectivity.
n_connected_components, labels = connected_components(nbg)
if n_connected_components > 1:
if self.metric == "precomputed" and issparse(X):
raise RuntimeError(
"The number of connected components of the neighbors graph"
f" is {n_connected_components} > 1. The graph cannot be "
"completed with metric='precomputed', and Isomap cannot be"
"fitted. Increase the number of neighbors to avoid this "
"issue, or precompute the full distance matrix instead "
"of passing a sparse neighbors graph."
)
warnings.warn(
"The number of connected components of the neighbors graph "
f"is {n_connected_components} > 1. Completing the graph to fit"
" Isomap might be slow. Increase the number of neighbors to "
"avoid this issue.",
stacklevel=2,
)
# use array validated by NearestNeighbors
nbg = _fix_connected_components(
X=self.nbrs_._fit_X,
graph=nbg,
n_connected_components=n_connected_components,
component_labels=labels,
mode="distance",
metric=self.nbrs_.effective_metric_,
**self.nbrs_.effective_metric_params_,
)
self.dist_matrix_ = shortest_path(nbg, method=self.path_method, directed=False)
if self.nbrs_._fit_X.dtype == np.float32:
self.dist_matrix_ = self.dist_matrix_.astype(
self.nbrs_._fit_X.dtype, copy=False
)
G = self.dist_matrix_**2
G *= -0.5
self.embedding_ = self.kernel_pca_.fit_transform(G)
self._n_features_out = self.embedding_.shape[1]
def reconstruction_error(self):
"""Compute the reconstruction error for the embedding.
Returns
-------
reconstruction_error : float
Reconstruction error.
Notes
-----
The cost function of an isomap embedding is
``E = frobenius_norm[K(D) - K(D_fit)] / n_samples``
Where D is the matrix of distances for the input data X,
D_fit is the matrix of distances for the output embedding X_fit,
and K is the isomap kernel:
``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)``
"""
G = -0.5 * self.dist_matrix_**2
G_center = KernelCenterer().fit_transform(G)
evals = self.kernel_pca_.eigenvalues_
return np.sqrt(np.sum(G_center**2) - np.sum(evals**2)) / G.shape[0]
def fit(self, X, y=None):
"""Compute the embedding vectors for data X.
Parameters
----------
X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors}
Sample data, shape = (n_samples, n_features), in the form of a
numpy array, sparse matrix, precomputed tree, or NearestNeighbors
object.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : object
Returns a fitted instance of self.
"""
self._validate_params()
self._fit_transform(X)
return self
def fit_transform(self, X, y=None):
"""Fit the model from data in X and transform X.
Parameters
----------
X : {array-like, sparse matrix, BallTree, KDTree}
Training vector, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
X transformed in the new space.
"""
self._validate_params()
self._fit_transform(X)
return self.embedding_
def transform(self, X):
"""Transform X.
This is implemented by linking the points X into the graph of geodesic
distances of the training data. First the `n_neighbors` nearest
neighbors of X are found in the training data, and from these the
shortest geodesic distances from each point in X to each point in
the training data are computed in order to construct the kernel.
The embedding of X is the projection of this kernel onto the
embedding vectors of the training set.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_queries, n_features)
If neighbors_algorithm='precomputed', X is assumed to be a
distance matrix or a sparse graph of shape
(n_queries, n_samples_fit).
Returns
-------
X_new : array-like, shape (n_queries, n_components)
X transformed in the new space.
"""
check_is_fitted(self)
if self.n_neighbors is not None:
distances, indices = self.nbrs_.kneighbors(X, return_distance=True)
else:
distances, indices = self.nbrs_.radius_neighbors(X, return_distance=True)
# Create the graph of shortest distances from X to
# training data via the nearest neighbors of X.
# This can be done as a single array operation, but it potentially
# takes a lot of memory. To avoid that, use a loop:
n_samples_fit = self.nbrs_.n_samples_fit_
n_queries = distances.shape[0]
if hasattr(X, "dtype") and X.dtype == np.float32:
dtype = np.float32
else:
dtype = np.float64
G_X = np.zeros((n_queries, n_samples_fit), dtype)
for i in range(n_queries):
G_X[i] = np.min(self.dist_matrix_[indices[i]] + distances[i][:, None], 0)
G_X **= 2
G_X *= -0.5
return self.kernel_pca_.transform(G_X)
def _more_tags(self):
return {"preserves_dtype": [np.float64, np.float32]}