Inzynierka_Gwiazdy/machine_learning/Lib/site-packages/sklearn/utils/optimize.py

267 lines
7.3 KiB
Python
Raw Normal View History

2023-09-20 19:46:58 +02:00
"""
Our own implementation of the Newton algorithm
Unlike the scipy.optimize version, this version of the Newton conjugate
gradient solver uses only one function call to retrieve the
func value, the gradient value and a callable for the Hessian matvec
product. If the function call is very expensive (e.g. for logistic
regression with large design matrix), this approach gives very
significant speedups.
"""
# This is a modified file from scipy.optimize
# Original authors: Travis Oliphant, Eric Jones
# Modifications by Gael Varoquaux, Mathieu Blondel and Tom Dupre la Tour
# License: BSD
import numpy as np
import warnings
from .fixes import line_search_wolfe1, line_search_wolfe2
from ..exceptions import ConvergenceWarning
class _LineSearchError(RuntimeError):
pass
def _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval, **kwargs):
"""
Same as line_search_wolfe1, but fall back to line_search_wolfe2 if
suitable step length is not found, and raise an exception if a
suitable step length is not found.
Raises
------
_LineSearchError
If no suitable step size is found.
"""
ret = line_search_wolfe1(f, fprime, xk, pk, gfk, old_fval, old_old_fval, **kwargs)
if ret[0] is None:
# line search failed: try different one.
ret = line_search_wolfe2(
f, fprime, xk, pk, gfk, old_fval, old_old_fval, **kwargs
)
if ret[0] is None:
raise _LineSearchError()
return ret
def _cg(fhess_p, fgrad, maxiter, tol):
"""
Solve iteratively the linear system 'fhess_p . xsupi = fgrad'
with a conjugate gradient descent.
Parameters
----------
fhess_p : callable
Function that takes the gradient as a parameter and returns the
matrix product of the Hessian and gradient.
fgrad : ndarray of shape (n_features,) or (n_features + 1,)
Gradient vector.
maxiter : int
Number of CG iterations.
tol : float
Stopping criterion.
Returns
-------
xsupi : ndarray of shape (n_features,) or (n_features + 1,)
Estimated solution.
"""
xsupi = np.zeros(len(fgrad), dtype=fgrad.dtype)
ri = fgrad
psupi = -ri
i = 0
dri0 = np.dot(ri, ri)
while i <= maxiter:
if np.sum(np.abs(ri)) <= tol:
break
Ap = fhess_p(psupi)
# check curvature
curv = np.dot(psupi, Ap)
if 0 <= curv <= 3 * np.finfo(np.float64).eps:
break
elif curv < 0:
if i > 0:
break
else:
# fall back to steepest descent direction
xsupi += dri0 / curv * psupi
break
alphai = dri0 / curv
xsupi += alphai * psupi
ri = ri + alphai * Ap
dri1 = np.dot(ri, ri)
betai = dri1 / dri0
psupi = -ri + betai * psupi
i = i + 1
dri0 = dri1 # update np.dot(ri,ri) for next time.
return xsupi
def _newton_cg(
grad_hess,
func,
grad,
x0,
args=(),
tol=1e-4,
maxiter=100,
maxinner=200,
line_search=True,
warn=True,
):
"""
Minimization of scalar function of one or more variables using the
Newton-CG algorithm.
Parameters
----------
grad_hess : callable
Should return the gradient and a callable returning the matvec product
of the Hessian.
func : callable
Should return the value of the function.
grad : callable
Should return the function value and the gradient. This is used
by the linesearch functions.
x0 : array of float
Initial guess.
args : tuple, default=()
Arguments passed to func_grad_hess, func and grad.
tol : float, default=1e-4
Stopping criterion. The iteration will stop when
``max{|g_i | i = 1, ..., n} <= tol``
where ``g_i`` is the i-th component of the gradient.
maxiter : int, default=100
Number of Newton iterations.
maxinner : int, default=200
Number of CG iterations.
line_search : bool, default=True
Whether to use a line search or not.
warn : bool, default=True
Whether to warn when didn't converge.
Returns
-------
xk : ndarray of float
Estimated minimum.
"""
x0 = np.asarray(x0).flatten()
xk = x0
k = 0
if line_search:
old_fval = func(x0, *args)
old_old_fval = None
# Outer loop: our Newton iteration
while k < maxiter:
# Compute a search direction pk by applying the CG method to
# del2 f(xk) p = - fgrad f(xk) starting from 0.
fgrad, fhess_p = grad_hess(xk, *args)
absgrad = np.abs(fgrad)
if np.max(absgrad) <= tol:
break
maggrad = np.sum(absgrad)
eta = min([0.5, np.sqrt(maggrad)])
termcond = eta * maggrad
# Inner loop: solve the Newton update by conjugate gradient, to
# avoid inverting the Hessian
xsupi = _cg(fhess_p, fgrad, maxiter=maxinner, tol=termcond)
alphak = 1.0
if line_search:
try:
alphak, fc, gc, old_fval, old_old_fval, gfkp1 = _line_search_wolfe12(
func, grad, xk, xsupi, fgrad, old_fval, old_old_fval, args=args
)
except _LineSearchError:
warnings.warn("Line Search failed")
break
xk = xk + alphak * xsupi # upcast if necessary
k += 1
if warn and k >= maxiter:
warnings.warn(
"newton-cg failed to converge. Increase the number of iterations.",
ConvergenceWarning,
)
return xk, k
def _check_optimize_result(solver, result, max_iter=None, extra_warning_msg=None):
"""Check the OptimizeResult for successful convergence
Parameters
----------
solver : str
Solver name. Currently only `lbfgs` is supported.
result : OptimizeResult
Result of the scipy.optimize.minimize function.
max_iter : int, default=None
Expected maximum number of iterations.
extra_warning_msg : str, default=None
Extra warning message.
Returns
-------
n_iter : int
Number of iterations.
"""
# handle both scipy and scikit-learn solver names
if solver == "lbfgs":
if result.status != 0:
try:
# The message is already decoded in scipy>=1.6.0
result_message = result.message.decode("latin1")
except AttributeError:
result_message = result.message
warning_msg = (
"{} failed to converge (status={}):\n{}.\n\n"
"Increase the number of iterations (max_iter) "
"or scale the data as shown in:\n"
" https://scikit-learn.org/stable/modules/"
"preprocessing.html"
).format(solver, result.status, result_message)
if extra_warning_msg is not None:
warning_msg += "\n" + extra_warning_msg
warnings.warn(warning_msg, ConvergenceWarning, stacklevel=2)
if max_iter is not None:
# In scipy <= 1.0.0, nit may exceed maxiter for lbfgs.
# See https://github.com/scipy/scipy/issues/7854
n_iter_i = min(result.nit, max_iter)
else:
n_iter_i = result.nit
else:
raise NotImplementedError
return n_iter_i