Inzynierka_Gwiazdy/machine_learning/Lib/site-packages/sklearn/decomposition/_base.py

165 lines
5.6 KiB
Python
Raw Normal View History

2023-09-20 19:46:58 +02:00
"""Principal Component Analysis Base Classes"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Denis A. Engemann <denis-alexander.engemann@inria.fr>
# Kyle Kastner <kastnerkyle@gmail.com>
#
# License: BSD 3 clause
import numpy as np
from scipy import linalg
from ..base import BaseEstimator, TransformerMixin, ClassNamePrefixFeaturesOutMixin
from ..utils.validation import check_is_fitted
from abc import ABCMeta, abstractmethod
class _BasePCA(
ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator, metaclass=ABCMeta
):
"""Base class for PCA methods.
Warning: This class should not be used directly.
Use derived classes instead.
"""
def get_covariance(self):
"""Compute data covariance with the generative model.
``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)``
where S**2 contains the explained variances, and sigma2 contains the
noise variances.
Returns
-------
cov : array of shape=(n_features, n_features)
Estimated covariance of data.
"""
components_ = self.components_
exp_var = self.explained_variance_
if self.whiten:
components_ = components_ * np.sqrt(exp_var[:, np.newaxis])
exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.0)
cov = np.dot(components_.T * exp_var_diff, components_)
cov.flat[:: len(cov) + 1] += self.noise_variance_ # modify diag inplace
return cov
def get_precision(self):
"""Compute data precision matrix with the generative model.
Equals the inverse of the covariance but computed with
the matrix inversion lemma for efficiency.
Returns
-------
precision : array, shape=(n_features, n_features)
Estimated precision of data.
"""
n_features = self.components_.shape[1]
# handle corner cases first
if self.n_components_ == 0:
return np.eye(n_features) / self.noise_variance_
if np.isclose(self.noise_variance_, 0.0, atol=0.0):
return linalg.inv(self.get_covariance())
# Get precision using matrix inversion lemma
components_ = self.components_
exp_var = self.explained_variance_
if self.whiten:
components_ = components_ * np.sqrt(exp_var[:, np.newaxis])
exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.0)
precision = np.dot(components_, components_.T) / self.noise_variance_
precision.flat[:: len(precision) + 1] += 1.0 / exp_var_diff
precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_))
precision /= -(self.noise_variance_**2)
precision.flat[:: len(precision) + 1] += 1.0 / self.noise_variance_
return precision
@abstractmethod
def fit(self, X, y=None):
"""Placeholder for fit. Subclasses should implement this method!
Fit the model with X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples and
`n_features` is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
def transform(self, X):
"""Apply dimensionality reduction to X.
X is projected on the first principal components previously extracted
from a training set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
New data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Returns
-------
X_new : array-like of shape (n_samples, n_components)
Projection of X in the first principal components, where `n_samples`
is the number of samples and `n_components` is the number of the components.
"""
check_is_fitted(self)
X = self._validate_data(X, dtype=[np.float64, np.float32], reset=False)
if self.mean_ is not None:
X = X - self.mean_
X_transformed = np.dot(X, self.components_.T)
if self.whiten:
X_transformed /= np.sqrt(self.explained_variance_)
return X_transformed
def inverse_transform(self, X):
"""Transform data back to its original space.
In other words, return an input `X_original` whose transform would be X.
Parameters
----------
X : array-like of shape (n_samples, n_components)
New data, where `n_samples` is the number of samples
and `n_components` is the number of components.
Returns
-------
X_original array-like of shape (n_samples, n_features)
Original data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Notes
-----
If whitening is enabled, inverse_transform will compute the
exact inverse operation, which includes reversing whitening.
"""
if self.whiten:
return (
np.dot(
X,
np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_,
)
+ self.mean_
)
else:
return np.dot(X, self.components_) + self.mean_
@property
def _n_features_out(self):
"""Number of transformed output features."""
return self.components_.shape[0]