from __future__ import annotations from pathlib import Path from typing import ( TYPE_CHECKING, Sequence, ) from pandas._libs import lib from pandas.compat._optional import import_optional_dependency from pandas.util._validators import check_dtype_backend from pandas.core.dtypes.inference import is_list_like from pandas.io.common import stringify_path if TYPE_CHECKING: from pandas._typing import DtypeBackend from pandas import DataFrame def read_spss( path: str | Path, usecols: Sequence[str] | None = None, convert_categoricals: bool = True, dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, ) -> DataFrame: """ Load an SPSS file from the file path, returning a DataFrame. Parameters ---------- path : str or Path File path. usecols : list-like, optional Return a subset of the columns. If None, return all columns. convert_categoricals : bool, default is True Convert categorical columns into pd.Categorical. dtype_backend : {"numpy_nullable", "pyarrow"}, defaults to NumPy backed DataFrames Which dtype_backend to use, e.g. whether a DataFrame should have NumPy arrays, nullable dtypes are used for all dtypes that have a nullable implementation when "numpy_nullable" is set, pyarrow is used for all dtypes if "pyarrow" is set. The dtype_backends are still experimential. .. versionadded:: 2.0 Returns ------- DataFrame """ pyreadstat = import_optional_dependency("pyreadstat") check_dtype_backend(dtype_backend) if usecols is not None: if not is_list_like(usecols): raise TypeError("usecols must be list-like.") usecols = list(usecols) # pyreadstat requires a list df, _ = pyreadstat.read_sav( stringify_path(path), usecols=usecols, apply_value_formats=convert_categoricals ) if dtype_backend is not lib.no_default: df = df.convert_dtypes(dtype_backend=dtype_backend) return df