# Authors: Alexandre Gramfort # Mathieu Blondel # Olivier Grisel # Andreas Mueller # Joel Nothman # Hamzeh Alsalhi # License: BSD 3 clause from collections import defaultdict from numbers import Integral import itertools import array import warnings import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..utils.sparsefuncs import min_max_axis from ..utils import column_or_1d from ..utils.validation import _num_samples, check_array, check_is_fitted from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..utils._encode import _encode, _unique __all__ = [ "label_binarize", "LabelBinarizer", "LabelEncoder", "MultiLabelBinarizer", ] class LabelEncoder(TransformerMixin, BaseEstimator): """Encode target labels with value between 0 and n_classes-1. This transformer should be used to encode target values, *i.e.* `y`, and not the input `X`. Read more in the :ref:`User Guide `. .. versionadded:: 0.12 Attributes ---------- classes_ : ndarray of shape (n_classes,) Holds the label for each class. See Also -------- OrdinalEncoder : Encode categorical features using an ordinal encoding scheme. OneHotEncoder : Encode categorical features as a one-hot numeric array. Examples -------- `LabelEncoder` can be used to normalize labels. >>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) array([0, 0, 1, 2]...) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6]) It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels. >>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) array([2, 2, 1]...) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris'] """ def fit(self, y): """Fit label encoder. Parameters ---------- y : array-like of shape (n_samples,) Target values. Returns ------- self : returns an instance of self. Fitted label encoder. """ y = column_or_1d(y, warn=True) self.classes_ = _unique(y) return self def fit_transform(self, y): """Fit label encoder and return encoded labels. Parameters ---------- y : array-like of shape (n_samples,) Target values. Returns ------- y : array-like of shape (n_samples,) Encoded labels. """ y = column_or_1d(y, warn=True) self.classes_, y = _unique(y, return_inverse=True) return y def transform(self, y): """Transform labels to normalized encoding. Parameters ---------- y : array-like of shape (n_samples,) Target values. Returns ------- y : array-like of shape (n_samples,) Labels as normalized encodings. """ check_is_fitted(self) y = column_or_1d(y, dtype=self.classes_.dtype, warn=True) # transform of empty array is empty array if _num_samples(y) == 0: return np.array([]) return _encode(y, uniques=self.classes_) def inverse_transform(self, y): """Transform labels back to original encoding. Parameters ---------- y : ndarray of shape (n_samples,) Target values. Returns ------- y : ndarray of shape (n_samples,) Original encoding. """ check_is_fitted(self) y = column_or_1d(y, warn=True) # inverse transform of empty array is empty array if _num_samples(y) == 0: return np.array([]) diff = np.setdiff1d(y, np.arange(len(self.classes_))) if len(diff): raise ValueError("y contains previously unseen labels: %s" % str(diff)) y = np.asarray(y) return self.classes_[y] def _more_tags(self): return {"X_types": ["1dlabels"]} class LabelBinarizer(TransformerMixin, BaseEstimator): """Binarize labels in a one-vs-all fashion. Several regression and binary classification algorithms are available in scikit-learn. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer makes this process easy with the transform method. At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. LabelBinarizer makes this easy with the inverse_transform method. Read more in the :ref:`User Guide `. Parameters ---------- neg_label : int, default=0 Value with which negative labels must be encoded. pos_label : int, default=1 Value with which positive labels must be encoded. sparse_output : bool, default=False True if the returned array from transform is desired to be in sparse CSR format. Attributes ---------- classes_ : ndarray of shape (n_classes,) Holds the label for each class. y_type_ : str Represents the type of the target data as evaluated by utils.multiclass.type_of_target. Possible type are 'continuous', 'continuous-multioutput', 'binary', 'multiclass', 'multiclass-multioutput', 'multilabel-indicator', and 'unknown'. sparse_input_ : bool True if the input data to transform is given as a sparse matrix, False otherwise. See Also -------- label_binarize : Function to perform the transform operation of LabelBinarizer with fixed classes. OneHotEncoder : Encode categorical features using a one-hot aka one-of-K scheme. Examples -------- >>> from sklearn import preprocessing >>> lb = preprocessing.LabelBinarizer() >>> lb.fit([1, 2, 6, 4, 2]) LabelBinarizer() >>> lb.classes_ array([1, 2, 4, 6]) >>> lb.transform([1, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) Binary targets transform to a column vector >>> lb = preprocessing.LabelBinarizer() >>> lb.fit_transform(['yes', 'no', 'no', 'yes']) array([[1], [0], [0], [1]]) Passing a 2D matrix for multilabel classification >>> import numpy as np >>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]])) LabelBinarizer() >>> lb.classes_ array([0, 1, 2]) >>> lb.transform([0, 1, 2, 1]) array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) """ _parameter_constraints: dict = { "neg_label": [Integral], "pos_label": [Integral], "sparse_output": ["boolean"], } def __init__(self, *, neg_label=0, pos_label=1, sparse_output=False): self.neg_label = neg_label self.pos_label = pos_label self.sparse_output = sparse_output def fit(self, y): """Fit label binarizer. Parameters ---------- y : ndarray of shape (n_samples,) or (n_samples, n_classes) Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Returns ------- self : object Returns the instance itself. """ self._validate_params() if self.neg_label >= self.pos_label: raise ValueError( f"neg_label={self.neg_label} must be strictly less than " f"pos_label={self.pos_label}." ) if self.sparse_output and (self.pos_label == 0 or self.neg_label != 0): raise ValueError( "Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " f"pos_label={self.pos_label} and neg_label={self.neg_label}" ) self.y_type_ = type_of_target(y, input_name="y") if "multioutput" in self.y_type_: raise ValueError( "Multioutput target data is not supported with label binarization" ) if _num_samples(y) == 0: raise ValueError("y has 0 samples: %r" % y) self.sparse_input_ = sp.issparse(y) self.classes_ = unique_labels(y) return self def fit_transform(self, y): """Fit label binarizer/transform multi-class labels to binary labels. The output of transform is sometimes referred to as the 1-of-K coding scheme. Parameters ---------- y : {ndarray, sparse matrix} of shape (n_samples,) or \ (n_samples, n_classes) Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns ------- Y : {ndarray, sparse matrix} of shape (n_samples, n_classes) Shape will be (n_samples, 1) for binary problems. Sparse matrix will be of CSR format. """ return self.fit(y).transform(y) def transform(self, y): """Transform multi-class labels to binary labels. The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme. Parameters ---------- y : {array, sparse matrix} of shape (n_samples,) or \ (n_samples, n_classes) Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns ------- Y : {ndarray, sparse matrix} of shape (n_samples, n_classes) Shape will be (n_samples, 1) for binary problems. Sparse matrix will be of CSR format. """ check_is_fitted(self) y_is_multilabel = type_of_target(y).startswith("multilabel") if y_is_multilabel and not self.y_type_.startswith("multilabel"): raise ValueError("The object was not fitted with multilabel input.") return label_binarize( y, classes=self.classes_, pos_label=self.pos_label, neg_label=self.neg_label, sparse_output=self.sparse_output, ) def inverse_transform(self, Y, threshold=None): """Transform binary labels back to multi-class labels. Parameters ---------- Y : {ndarray, sparse matrix} of shape (n_samples, n_classes) Target values. All sparse matrices are converted to CSR before inverse transformation. threshold : float, default=None Threshold used in the binary and multi-label cases. Use 0 when ``Y`` contains the output of decision_function (classifier). Use 0.5 when ``Y`` contains the output of predict_proba. If None, the threshold is assumed to be half way between neg_label and pos_label. Returns ------- y : {ndarray, sparse matrix} of shape (n_samples,) Target values. Sparse matrix will be of CSR format. Notes ----- In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with the greatest value. Typically, this allows to use the output of a linear model's decision_function method directly as the input of inverse_transform. """ check_is_fitted(self) if threshold is None: threshold = (self.pos_label + self.neg_label) / 2.0 if self.y_type_ == "multiclass": y_inv = _inverse_binarize_multiclass(Y, self.classes_) else: y_inv = _inverse_binarize_thresholding( Y, self.y_type_, self.classes_, threshold ) if self.sparse_input_: y_inv = sp.csr_matrix(y_inv) elif sp.issparse(y_inv): y_inv = y_inv.toarray() return y_inv def _more_tags(self): return {"X_types": ["1dlabels"]} def label_binarize(y, *, classes, neg_label=0, pos_label=1, sparse_output=False): """Binarize labels in a one-vs-all fashion. Several regression and binary classification algorithms are available in scikit-learn. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. This function makes it possible to compute this transformation for a fixed set of class labels known ahead of time. Parameters ---------- y : array-like Sequence of integer labels or multilabel data to encode. classes : array-like of shape (n_classes,) Uniquely holds the label for each class. neg_label : int, default=0 Value with which negative labels must be encoded. pos_label : int, default=1 Value with which positive labels must be encoded. sparse_output : bool, default=False, Set to true if output binary array is desired in CSR sparse format. Returns ------- Y : {ndarray, sparse matrix} of shape (n_samples, n_classes) Shape will be (n_samples, 1) for binary problems. Sparse matrix will be of CSR format. See Also -------- LabelBinarizer : Class used to wrap the functionality of label_binarize and allow for fitting to classes independently of the transform operation. Examples -------- >>> from sklearn.preprocessing import label_binarize >>> label_binarize([1, 6], classes=[1, 2, 4, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) The class ordering is preserved: >>> label_binarize([1, 6], classes=[1, 6, 4, 2]) array([[1, 0, 0, 0], [0, 1, 0, 0]]) Binary targets transform to a column vector >>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes']) array([[1], [0], [0], [1]]) """ if not isinstance(y, list): # XXX Workaround that will be removed when list of list format is # dropped y = check_array( y, input_name="y", accept_sparse="csr", ensure_2d=False, dtype=None ) else: if _num_samples(y) == 0: raise ValueError("y has 0 samples: %r" % y) if neg_label >= pos_label: raise ValueError( "neg_label={0} must be strictly less than pos_label={1}.".format( neg_label, pos_label ) ) if sparse_output and (pos_label == 0 or neg_label != 0): raise ValueError( "Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label) ) # To account for pos_label == 0 in the dense case pos_switch = pos_label == 0 if pos_switch: pos_label = -neg_label y_type = type_of_target(y) if "multioutput" in y_type: raise ValueError( "Multioutput target data is not supported with label binarization" ) if y_type == "unknown": raise ValueError("The type of target data is not known") n_samples = y.shape[0] if sp.issparse(y) else len(y) n_classes = len(classes) classes = np.asarray(classes) if y_type == "binary": if n_classes == 1: if sparse_output: return sp.csr_matrix((n_samples, 1), dtype=int) else: Y = np.zeros((len(y), 1), dtype=int) Y += neg_label return Y elif len(classes) >= 3: y_type = "multiclass" sorted_class = np.sort(classes) if y_type == "multilabel-indicator": y_n_classes = y.shape[1] if hasattr(y, "shape") else len(y[0]) if classes.size != y_n_classes: raise ValueError( "classes {0} mismatch with the labels {1} found in the data".format( classes, unique_labels(y) ) ) if y_type in ("binary", "multiclass"): y = column_or_1d(y) # pick out the known labels from y y_in_classes = np.in1d(y, classes) y_seen = y[y_in_classes] indices = np.searchsorted(sorted_class, y_seen) indptr = np.hstack((0, np.cumsum(y_in_classes))) data = np.empty_like(indices) data.fill(pos_label) Y = sp.csr_matrix((data, indices, indptr), shape=(n_samples, n_classes)) elif y_type == "multilabel-indicator": Y = sp.csr_matrix(y) if pos_label != 1: data = np.empty_like(Y.data) data.fill(pos_label) Y.data = data else: raise ValueError( "%s target data is not supported with label binarization" % y_type ) if not sparse_output: Y = Y.toarray() Y = Y.astype(int, copy=False) if neg_label != 0: Y[Y == 0] = neg_label if pos_switch: Y[Y == pos_label] = 0 else: Y.data = Y.data.astype(int, copy=False) # preserve label ordering if np.any(classes != sorted_class): indices = np.searchsorted(sorted_class, classes) Y = Y[:, indices] if y_type == "binary": if sparse_output: Y = Y.getcol(-1) else: Y = Y[:, -1].reshape((-1, 1)) return Y def _inverse_binarize_multiclass(y, classes): """Inverse label binarization transformation for multiclass. Multiclass uses the maximal score instead of a threshold. """ classes = np.asarray(classes) if sp.issparse(y): # Find the argmax for each row in y where y is a CSR matrix y = y.tocsr() n_samples, n_outputs = y.shape outputs = np.arange(n_outputs) row_max = min_max_axis(y, 1)[1] row_nnz = np.diff(y.indptr) y_data_repeated_max = np.repeat(row_max, row_nnz) # picks out all indices obtaining the maximum per row y_i_all_argmax = np.flatnonzero(y_data_repeated_max == y.data) # For corner case where last row has a max of 0 if row_max[-1] == 0: y_i_all_argmax = np.append(y_i_all_argmax, [len(y.data)]) # Gets the index of the first argmax in each row from y_i_all_argmax index_first_argmax = np.searchsorted(y_i_all_argmax, y.indptr[:-1]) # first argmax of each row y_ind_ext = np.append(y.indices, [0]) y_i_argmax = y_ind_ext[y_i_all_argmax[index_first_argmax]] # Handle rows of all 0 y_i_argmax[np.where(row_nnz == 0)[0]] = 0 # Handles rows with max of 0 that contain negative numbers samples = np.arange(n_samples)[(row_nnz > 0) & (row_max.ravel() == 0)] for i in samples: ind = y.indices[y.indptr[i] : y.indptr[i + 1]] y_i_argmax[i] = classes[np.setdiff1d(outputs, ind)][0] return classes[y_i_argmax] else: return classes.take(y.argmax(axis=1), mode="clip") def _inverse_binarize_thresholding(y, output_type, classes, threshold): """Inverse label binarization transformation using thresholding.""" if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2: raise ValueError("output_type='binary', but y.shape = {0}".format(y.shape)) if output_type != "binary" and y.shape[1] != len(classes): raise ValueError( "The number of class is not equal to the number of dimension of y." ) classes = np.asarray(classes) # Perform thresholding if sp.issparse(y): if threshold > 0: if y.format not in ("csr", "csc"): y = y.tocsr() y.data = np.array(y.data > threshold, dtype=int) y.eliminate_zeros() else: y = np.array(y.toarray() > threshold, dtype=int) else: y = np.array(y > threshold, dtype=int) # Inverse transform data if output_type == "binary": if sp.issparse(y): y = y.toarray() if y.ndim == 2 and y.shape[1] == 2: return classes[y[:, 1]] else: if len(classes) == 1: return np.repeat(classes[0], len(y)) else: return classes[y.ravel()] elif output_type == "multilabel-indicator": return y else: raise ValueError("{0} format is not supported".format(output_type)) class MultiLabelBinarizer(TransformerMixin, BaseEstimator): """Transform between iterable of iterables and a multilabel format. Although a list of sets or tuples is a very intuitive format for multilabel data, it is unwieldy to process. This transformer converts between this intuitive format and the supported multilabel format: a (samples x classes) binary matrix indicating the presence of a class label. Parameters ---------- classes : array-like of shape (n_classes,), default=None Indicates an ordering for the class labels. All entries should be unique (cannot contain duplicate classes). sparse_output : bool, default=False Set to True if output binary array is desired in CSR sparse format. Attributes ---------- classes_ : ndarray of shape (n_classes,) A copy of the `classes` parameter when provided. Otherwise it corresponds to the sorted set of classes found when fitting. See Also -------- OneHotEncoder : Encode categorical features using a one-hot aka one-of-K scheme. Examples -------- >>> from sklearn.preprocessing import MultiLabelBinarizer >>> mlb = MultiLabelBinarizer() >>> mlb.fit_transform([(1, 2), (3,)]) array([[1, 1, 0], [0, 0, 1]]) >>> mlb.classes_ array([1, 2, 3]) >>> mlb.fit_transform([{'sci-fi', 'thriller'}, {'comedy'}]) array([[0, 1, 1], [1, 0, 0]]) >>> list(mlb.classes_) ['comedy', 'sci-fi', 'thriller'] A common mistake is to pass in a list, which leads to the following issue: >>> mlb = MultiLabelBinarizer() >>> mlb.fit(['sci-fi', 'thriller', 'comedy']) MultiLabelBinarizer() >>> mlb.classes_ array(['-', 'c', 'd', 'e', 'f', 'h', 'i', 'l', 'm', 'o', 'r', 's', 't', 'y'], dtype=object) To correct this, the list of labels should be passed in as: >>> mlb = MultiLabelBinarizer() >>> mlb.fit([['sci-fi', 'thriller', 'comedy']]) MultiLabelBinarizer() >>> mlb.classes_ array(['comedy', 'sci-fi', 'thriller'], dtype=object) """ _parameter_constraints: dict = { "classes": ["array-like", None], "sparse_output": ["boolean"], } def __init__(self, *, classes=None, sparse_output=False): self.classes = classes self.sparse_output = sparse_output def fit(self, y): """Fit the label sets binarizer, storing :term:`classes_`. Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- self : object Fitted estimator. """ self._validate_params() self._cached_dict = None if self.classes is None: classes = sorted(set(itertools.chain.from_iterable(y))) elif len(set(self.classes)) < len(self.classes): raise ValueError( "The classes argument contains duplicate " "classes. Remove these duplicates before passing " "them to MultiLabelBinarizer." ) else: classes = self.classes dtype = int if all(isinstance(c, int) for c in classes) else object self.classes_ = np.empty(len(classes), dtype=dtype) self.classes_[:] = classes return self def fit_transform(self, y): """Fit the label sets binarizer and transform the given label sets. Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : {ndarray, sparse matrix} of shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. Sparse matrix will be of CSR format. """ if self.classes is not None: return self.fit(y).transform(y) self._validate_params() self._cached_dict = None # Automatically increment on new class class_mapping = defaultdict(int) class_mapping.default_factory = class_mapping.__len__ yt = self._transform(y, class_mapping) # sort classes and reorder columns tmp = sorted(class_mapping, key=class_mapping.get) # (make safe for tuples) dtype = int if all(isinstance(c, int) for c in tmp) else object class_mapping = np.empty(len(tmp), dtype=dtype) class_mapping[:] = tmp self.classes_, inverse = np.unique(class_mapping, return_inverse=True) # ensure yt.indices keeps its current dtype yt.indices = np.array(inverse[yt.indices], dtype=yt.indices.dtype, copy=False) if not self.sparse_output: yt = yt.toarray() return yt def transform(self, y): """Transform the given label sets. Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ check_is_fitted(self) class_to_index = self._build_cache() yt = self._transform(y, class_to_index) if not self.sparse_output: yt = yt.toarray() return yt def _build_cache(self): if self._cached_dict is None: self._cached_dict = dict(zip(self.classes_, range(len(self.classes_)))) return self._cached_dict def _transform(self, y, class_mapping): """Transforms the label sets with a given mapping. Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. class_mapping : Mapping Maps from label to column index in label indicator matrix. Returns ------- y_indicator : sparse matrix of shape (n_samples, n_classes) Label indicator matrix. Will be of CSR format. """ indices = array.array("i") indptr = array.array("i", [0]) unknown = set() for labels in y: index = set() for label in labels: try: index.add(class_mapping[label]) except KeyError: unknown.add(label) indices.extend(index) indptr.append(len(indices)) if unknown: warnings.warn( "unknown class(es) {0} will be ignored".format(sorted(unknown, key=str)) ) data = np.ones(len(indices), dtype=int) return sp.csr_matrix( (data, indices, indptr), shape=(len(indptr) - 1, len(class_mapping)) ) def inverse_transform(self, yt): """Transform the given indicator matrix into label sets. Parameters ---------- yt : {ndarray, sparse matrix} of shape (n_samples, n_classes) A matrix containing only 1s ands 0s. Returns ------- y : list of tuples The set of labels for each sample such that `y[i]` consists of `classes_[j]` for each `yt[i, j] == 1`. """ check_is_fitted(self) if yt.shape[1] != len(self.classes_): raise ValueError( "Expected indicator for {0} classes, but got {1}".format( len(self.classes_), yt.shape[1] ) ) if sp.issparse(yt): yt = yt.tocsr() if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0: raise ValueError("Expected only 0s and 1s in label indicator.") return [ tuple(self.classes_.take(yt.indices[start:end])) for start, end in zip(yt.indptr[:-1], yt.indptr[1:]) ] else: unexpected = np.setdiff1d(yt, [0, 1]) if len(unexpected) > 0: raise ValueError( "Expected only 0s and 1s in label indicator. Also got {0}".format( unexpected ) ) return [tuple(self.classes_.compress(indicators)) for indicators in yt] def _more_tags(self): return {"X_types": ["2dlabels"]}