import os import joblib import pandas as pd from sklearn.impute import SimpleImputer TEST_DATA_DIR = "datasets_test" test_df_list = [] for file in os.listdir(TEST_DATA_DIR): file_path = os.path.join(TEST_DATA_DIR, file) df = pd.read_csv(file_path, delim_whitespace=True, skiprows=1, names=["tbid", "tphys", "r", "vr", "vt", "ik1", "ik2", "sm1", "sm2", "a", "e", "collapsed"]) test_df_list.append(df) data_test = pd.concat(test_df_list, ignore_index=True).sample(frac=1, random_state=42) X_test = data_test.iloc[:, 1:-1].values imputer = SimpleImputer(strategy='mean') X_imputed = imputer.fit_transform(X_test) model_filename = 'trained_model.pkl' model = joblib.load(model_filename) predictions = model.predict(X_test) print(predictions)