Inzynierka_Gwiazdy/machine_learning/Lib/site-packages/scipy/signal/_spectral.py
2023-09-20 19:46:58 +02:00

84 lines
1.9 KiB
Python

# Author: Pim Schellart
# 2010 - 2011
"""Tools for spectral analysis of unequally sampled signals."""
import numpy as np
#pythran export _lombscargle(float64[], float64[], float64[])
def _lombscargle(x, y, freqs):
"""
_lombscargle(x, y, freqs)
Computes the Lomb-Scargle periodogram.
Parameters
----------
x : array_like
Sample times.
y : array_like
Measurement values (must be registered so the mean is zero).
freqs : array_like
Angular frequencies for output periodogram.
Returns
-------
pgram : array_like
Lomb-Scargle periodogram.
Raises
------
ValueError
If the input arrays `x` and `y` do not have the same shape.
See also
--------
lombscargle
"""
# Check input sizes
if x.shape != y.shape:
raise ValueError("Input arrays do not have the same size.")
# Create empty array for output periodogram
pgram = np.empty_like(freqs)
c = np.empty_like(x)
s = np.empty_like(x)
for i in range(freqs.shape[0]):
xc = 0.
xs = 0.
cc = 0.
ss = 0.
cs = 0.
c[:] = np.cos(freqs[i] * x)
s[:] = np.sin(freqs[i] * x)
for j in range(x.shape[0]):
xc += y[j] * c[j]
xs += y[j] * s[j]
cc += c[j] * c[j]
ss += s[j] * s[j]
cs += c[j] * s[j]
if freqs[i] == 0:
raise ZeroDivisionError()
tau = np.arctan2(2 * cs, cc - ss) / (2 * freqs[i])
c_tau = np.cos(freqs[i] * tau)
s_tau = np.sin(freqs[i] * tau)
c_tau2 = c_tau * c_tau
s_tau2 = s_tau * s_tau
cs_tau = 2 * c_tau * s_tau
pgram[i] = 0.5 * (((c_tau * xc + s_tau * xs)**2 /
(c_tau2 * cc + cs_tau * cs + s_tau2 * ss)) +
((c_tau * xs - s_tau * xc)**2 /
(c_tau2 * ss - cs_tau * cs + s_tau2 * cc)))
return pgram