84 lines
1.9 KiB
Python
84 lines
1.9 KiB
Python
# Author: Pim Schellart
|
|
# 2010 - 2011
|
|
|
|
"""Tools for spectral analysis of unequally sampled signals."""
|
|
|
|
import numpy as np
|
|
|
|
#pythran export _lombscargle(float64[], float64[], float64[])
|
|
def _lombscargle(x, y, freqs):
|
|
"""
|
|
_lombscargle(x, y, freqs)
|
|
|
|
Computes the Lomb-Scargle periodogram.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Sample times.
|
|
y : array_like
|
|
Measurement values (must be registered so the mean is zero).
|
|
freqs : array_like
|
|
Angular frequencies for output periodogram.
|
|
|
|
Returns
|
|
-------
|
|
pgram : array_like
|
|
Lomb-Scargle periodogram.
|
|
|
|
Raises
|
|
------
|
|
ValueError
|
|
If the input arrays `x` and `y` do not have the same shape.
|
|
|
|
See also
|
|
--------
|
|
lombscargle
|
|
|
|
"""
|
|
|
|
# Check input sizes
|
|
if x.shape != y.shape:
|
|
raise ValueError("Input arrays do not have the same size.")
|
|
|
|
# Create empty array for output periodogram
|
|
pgram = np.empty_like(freqs)
|
|
|
|
c = np.empty_like(x)
|
|
s = np.empty_like(x)
|
|
|
|
for i in range(freqs.shape[0]):
|
|
|
|
xc = 0.
|
|
xs = 0.
|
|
cc = 0.
|
|
ss = 0.
|
|
cs = 0.
|
|
|
|
c[:] = np.cos(freqs[i] * x)
|
|
s[:] = np.sin(freqs[i] * x)
|
|
|
|
for j in range(x.shape[0]):
|
|
xc += y[j] * c[j]
|
|
xs += y[j] * s[j]
|
|
cc += c[j] * c[j]
|
|
ss += s[j] * s[j]
|
|
cs += c[j] * s[j]
|
|
|
|
if freqs[i] == 0:
|
|
raise ZeroDivisionError()
|
|
|
|
tau = np.arctan2(2 * cs, cc - ss) / (2 * freqs[i])
|
|
c_tau = np.cos(freqs[i] * tau)
|
|
s_tau = np.sin(freqs[i] * tau)
|
|
c_tau2 = c_tau * c_tau
|
|
s_tau2 = s_tau * s_tau
|
|
cs_tau = 2 * c_tau * s_tau
|
|
|
|
pgram[i] = 0.5 * (((c_tau * xc + s_tau * xs)**2 /
|
|
(c_tau2 * cc + cs_tau * cs + s_tau2 * ss)) +
|
|
((c_tau * xs - s_tau * xc)**2 /
|
|
(c_tau2 * ss - cs_tau * cs + s_tau2 * cc)))
|
|
|
|
return pgram
|