Inzynierka_Gwiazdy/machine_learning/Lib/site-packages/pandas/tests/indexes/common.py
2023-09-20 19:46:58 +02:00

948 lines
33 KiB
Python

from __future__ import annotations
from datetime import datetime
import gc
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
from pandas.core.dtypes.common import (
is_datetime64tz_dtype,
is_integer_dtype,
)
from pandas.core.dtypes.dtypes import CategoricalDtype
import pandas as pd
from pandas import (
CategoricalIndex,
DatetimeIndex,
Index,
IntervalIndex,
MultiIndex,
PeriodIndex,
RangeIndex,
Series,
TimedeltaIndex,
isna,
)
import pandas._testing as tm
from pandas.core.arrays import BaseMaskedArray
class Base:
"""
Base class for index sub-class tests.
"""
_index_cls: type[Index]
@pytest.fixture
def simple_index(self):
raise NotImplementedError("Method not implemented")
def create_index(self) -> Index:
raise NotImplementedError("Method not implemented")
def test_pickle_compat_construction(self):
# need an object to create with
msg = "|".join(
[
r"Index\(\.\.\.\) must be called with a collection of some "
r"kind, None was passed",
r"DatetimeIndex\(\) must be called with a collection of some "
r"kind, None was passed",
r"TimedeltaIndex\(\) must be called with a collection of some "
r"kind, None was passed",
r"__new__\(\) missing 1 required positional argument: 'data'",
r"__new__\(\) takes at least 2 arguments \(1 given\)",
]
)
with pytest.raises(TypeError, match=msg):
self._index_cls()
def test_shift(self, simple_index):
# GH8083 test the base class for shift
idx = simple_index
msg = (
f"This method is only implemented for DatetimeIndex, PeriodIndex and "
f"TimedeltaIndex; Got type {type(idx).__name__}"
)
with pytest.raises(NotImplementedError, match=msg):
idx.shift(1)
with pytest.raises(NotImplementedError, match=msg):
idx.shift(1, 2)
def test_constructor_name_unhashable(self, simple_index):
# GH#29069 check that name is hashable
# See also same-named test in tests.series.test_constructors
idx = simple_index
with pytest.raises(TypeError, match="Index.name must be a hashable type"):
type(idx)(idx, name=[])
def test_create_index_existing_name(self, simple_index):
# GH11193, when an existing index is passed, and a new name is not
# specified, the new index should inherit the previous object name
expected = simple_index
if not isinstance(expected, MultiIndex):
expected.name = "foo"
result = Index(expected)
tm.assert_index_equal(result, expected)
result = Index(expected, name="bar")
expected.name = "bar"
tm.assert_index_equal(result, expected)
else:
expected.names = ["foo", "bar"]
result = Index(expected)
tm.assert_index_equal(
result,
Index(
Index(
[
("foo", "one"),
("foo", "two"),
("bar", "one"),
("baz", "two"),
("qux", "one"),
("qux", "two"),
],
dtype="object",
),
names=["foo", "bar"],
),
)
result = Index(expected, names=["A", "B"])
tm.assert_index_equal(
result,
Index(
Index(
[
("foo", "one"),
("foo", "two"),
("bar", "one"),
("baz", "two"),
("qux", "one"),
("qux", "two"),
],
dtype="object",
),
names=["A", "B"],
),
)
def test_numeric_compat(self, simple_index):
idx = simple_index
# Check that this doesn't cover MultiIndex case, if/when it does,
# we can remove multi.test_compat.test_numeric_compat
assert not isinstance(idx, MultiIndex)
if type(idx) is Index:
return
typ = type(idx._data).__name__
cls = type(idx).__name__
lmsg = "|".join(
[
rf"unsupported operand type\(s\) for \*: '{typ}' and 'int'",
"cannot perform (__mul__|__truediv__|__floordiv__) with "
f"this index type: ({cls}|{typ})",
]
)
with pytest.raises(TypeError, match=lmsg):
idx * 1
rmsg = "|".join(
[
rf"unsupported operand type\(s\) for \*: 'int' and '{typ}'",
"cannot perform (__rmul__|__rtruediv__|__rfloordiv__) with "
f"this index type: ({cls}|{typ})",
]
)
with pytest.raises(TypeError, match=rmsg):
1 * idx
div_err = lmsg.replace("*", "/")
with pytest.raises(TypeError, match=div_err):
idx / 1
div_err = rmsg.replace("*", "/")
with pytest.raises(TypeError, match=div_err):
1 / idx
floordiv_err = lmsg.replace("*", "//")
with pytest.raises(TypeError, match=floordiv_err):
idx // 1
floordiv_err = rmsg.replace("*", "//")
with pytest.raises(TypeError, match=floordiv_err):
1 // idx
def test_logical_compat(self, simple_index):
idx = simple_index
with pytest.raises(TypeError, match="cannot perform all"):
idx.all()
with pytest.raises(TypeError, match="cannot perform any"):
idx.any()
def test_repr_roundtrip(self, simple_index):
idx = simple_index
tm.assert_index_equal(eval(repr(idx)), idx)
def test_repr_max_seq_item_setting(self, simple_index):
# GH10182
idx = simple_index
idx = idx.repeat(50)
with pd.option_context("display.max_seq_items", None):
repr(idx)
assert "..." not in str(idx)
def test_ensure_copied_data(self, index):
# Check the "copy" argument of each Index.__new__ is honoured
# GH12309
init_kwargs = {}
if isinstance(index, PeriodIndex):
# Needs "freq" specification:
init_kwargs["freq"] = index.freq
elif isinstance(index, (RangeIndex, MultiIndex, CategoricalIndex)):
# RangeIndex cannot be initialized from data
# MultiIndex and CategoricalIndex are tested separately
return
elif index.dtype == object and index.inferred_type == "boolean":
init_kwargs["dtype"] = index.dtype
index_type = type(index)
result = index_type(index.values, copy=True, **init_kwargs)
if is_datetime64tz_dtype(index.dtype):
result = result.tz_localize("UTC").tz_convert(index.tz)
if isinstance(index, (DatetimeIndex, TimedeltaIndex)):
index = index._with_freq(None)
tm.assert_index_equal(index, result)
if isinstance(index, PeriodIndex):
# .values an object array of Period, thus copied
result = index_type(ordinal=index.asi8, copy=False, **init_kwargs)
tm.assert_numpy_array_equal(index.asi8, result.asi8, check_same="same")
elif isinstance(index, IntervalIndex):
# checked in test_interval.py
pass
elif type(index) is Index and not isinstance(index.dtype, np.dtype):
result = index_type(index.values, copy=False, **init_kwargs)
tm.assert_index_equal(result, index)
if isinstance(index._values, BaseMaskedArray):
assert np.shares_memory(index._values._data, result._values._data)
tm.assert_numpy_array_equal(
index._values._data, result._values._data, check_same="same"
)
assert np.shares_memory(index._values._mask, result._values._mask)
tm.assert_numpy_array_equal(
index._values._mask, result._values._mask, check_same="same"
)
elif index.dtype == "string[python]":
assert np.shares_memory(index._values._ndarray, result._values._ndarray)
tm.assert_numpy_array_equal(
index._values._ndarray, result._values._ndarray, check_same="same"
)
elif index.dtype == "string[pyarrow]":
assert tm.shares_memory(result._values, index._values)
else:
raise NotImplementedError(index.dtype)
else:
result = index_type(index.values, copy=False, **init_kwargs)
tm.assert_numpy_array_equal(index.values, result.values, check_same="same")
def test_memory_usage(self, index):
index._engine.clear_mapping()
result = index.memory_usage()
if index.empty:
# we report 0 for no-length
assert result == 0
return
# non-zero length
index.get_loc(index[0])
result2 = index.memory_usage()
result3 = index.memory_usage(deep=True)
# RangeIndex, IntervalIndex
# don't have engines
# Index[EA] has engine but it does not have a Hashtable .mapping
if not isinstance(index, (RangeIndex, IntervalIndex)) and not (
type(index) is Index and not isinstance(index.dtype, np.dtype)
):
assert result2 > result
if index.inferred_type == "object":
assert result3 > result2
def test_argsort(self, index):
# separately tested
if isinstance(index, CategoricalIndex):
return
result = index.argsort()
expected = np.array(index).argsort()
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
def test_numpy_argsort(self, index):
result = np.argsort(index)
expected = index.argsort()
tm.assert_numpy_array_equal(result, expected)
result = np.argsort(index, kind="mergesort")
expected = index.argsort(kind="mergesort")
tm.assert_numpy_array_equal(result, expected)
# these are the only two types that perform
# pandas compatibility input validation - the
# rest already perform separate (or no) such
# validation via their 'values' attribute as
# defined in pandas.core.indexes/base.py - they
# cannot be changed at the moment due to
# backwards compatibility concerns
if isinstance(index, (CategoricalIndex, RangeIndex)):
msg = "the 'axis' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.argsort(index, axis=1)
msg = "the 'order' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.argsort(index, order=("a", "b"))
def test_repeat(self, simple_index):
rep = 2
idx = simple_index.copy()
new_index_cls = idx._constructor
expected = new_index_cls(idx.values.repeat(rep), name=idx.name)
tm.assert_index_equal(idx.repeat(rep), expected)
idx = simple_index
rep = np.arange(len(idx))
expected = new_index_cls(idx.values.repeat(rep), name=idx.name)
tm.assert_index_equal(idx.repeat(rep), expected)
def test_numpy_repeat(self, simple_index):
rep = 2
idx = simple_index
expected = idx.repeat(rep)
tm.assert_index_equal(np.repeat(idx, rep), expected)
msg = "the 'axis' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.repeat(idx, rep, axis=0)
def test_where(self, listlike_box, simple_index):
klass = listlike_box
idx = simple_index
if isinstance(idx, (DatetimeIndex, TimedeltaIndex)):
# where does not preserve freq
idx = idx._with_freq(None)
cond = [True] * len(idx)
result = idx.where(klass(cond))
expected = idx
tm.assert_index_equal(result, expected)
cond = [False] + [True] * len(idx[1:])
expected = Index([idx._na_value] + idx[1:].tolist(), dtype=idx.dtype)
result = idx.where(klass(cond))
tm.assert_index_equal(result, expected)
def test_insert_base(self, index):
result = index[1:4]
if not len(index):
return
# test 0th element
assert index[0:4].equals(result.insert(0, index[0]))
def test_insert_out_of_bounds(self, index):
# TypeError/IndexError matches what np.insert raises in these cases
if len(index) > 0:
err = TypeError
else:
err = IndexError
if len(index) == 0:
# 0 vs 0.5 in error message varies with numpy version
msg = "index (0|0.5) is out of bounds for axis 0 with size 0"
else:
msg = "slice indices must be integers or None or have an __index__ method"
with pytest.raises(err, match=msg):
index.insert(0.5, "foo")
msg = "|".join(
[
r"index -?\d+ is out of bounds for axis 0 with size \d+",
"loc must be an integer between",
]
)
with pytest.raises(IndexError, match=msg):
index.insert(len(index) + 1, 1)
with pytest.raises(IndexError, match=msg):
index.insert(-len(index) - 1, 1)
def test_delete_base(self, index):
if not len(index):
return
if isinstance(index, RangeIndex):
# tested in class
return
expected = index[1:]
result = index.delete(0)
assert result.equals(expected)
assert result.name == expected.name
expected = index[:-1]
result = index.delete(-1)
assert result.equals(expected)
assert result.name == expected.name
length = len(index)
msg = f"index {length} is out of bounds for axis 0 with size {length}"
with pytest.raises(IndexError, match=msg):
index.delete(length)
def test_equals(self, index):
if isinstance(index, IntervalIndex):
# IntervalIndex tested separately, the index.equals(index.astype(object))
# fails for IntervalIndex
return
is_ea_idx = type(index) is Index and not isinstance(index.dtype, np.dtype)
assert index.equals(index)
assert index.equals(index.copy())
if not is_ea_idx:
# doesn't hold for e.g. IntegerDtype
assert index.equals(index.astype(object))
assert not index.equals(list(index))
assert not index.equals(np.array(index))
# Cannot pass in non-int64 dtype to RangeIndex
if not isinstance(index, RangeIndex) and not is_ea_idx:
same_values = Index(index, dtype=object)
assert index.equals(same_values)
assert same_values.equals(index)
if index.nlevels == 1:
# do not test MultiIndex
assert not index.equals(Series(index))
def test_equals_op(self, simple_index):
# GH9947, GH10637
index_a = simple_index
n = len(index_a)
index_b = index_a[0:-1]
index_c = index_a[0:-1].append(index_a[-2:-1])
index_d = index_a[0:1]
msg = "Lengths must match|could not be broadcast"
with pytest.raises(ValueError, match=msg):
index_a == index_b
expected1 = np.array([True] * n)
expected2 = np.array([True] * (n - 1) + [False])
tm.assert_numpy_array_equal(index_a == index_a, expected1)
tm.assert_numpy_array_equal(index_a == index_c, expected2)
# test comparisons with numpy arrays
array_a = np.array(index_a)
array_b = np.array(index_a[0:-1])
array_c = np.array(index_a[0:-1].append(index_a[-2:-1]))
array_d = np.array(index_a[0:1])
with pytest.raises(ValueError, match=msg):
index_a == array_b
tm.assert_numpy_array_equal(index_a == array_a, expected1)
tm.assert_numpy_array_equal(index_a == array_c, expected2)
# test comparisons with Series
series_a = Series(array_a)
series_b = Series(array_b)
series_c = Series(array_c)
series_d = Series(array_d)
with pytest.raises(ValueError, match=msg):
index_a == series_b
tm.assert_numpy_array_equal(index_a == series_a, expected1)
tm.assert_numpy_array_equal(index_a == series_c, expected2)
# cases where length is 1 for one of them
with pytest.raises(ValueError, match="Lengths must match"):
index_a == index_d
with pytest.raises(ValueError, match="Lengths must match"):
index_a == series_d
with pytest.raises(ValueError, match="Lengths must match"):
index_a == array_d
msg = "Can only compare identically-labeled Series objects"
with pytest.raises(ValueError, match=msg):
series_a == series_d
with pytest.raises(ValueError, match="Lengths must match"):
series_a == array_d
# comparing with a scalar should broadcast; note that we are excluding
# MultiIndex because in this case each item in the index is a tuple of
# length 2, and therefore is considered an array of length 2 in the
# comparison instead of a scalar
if not isinstance(index_a, MultiIndex):
expected3 = np.array([False] * (len(index_a) - 2) + [True, False])
# assuming the 2nd to last item is unique in the data
item = index_a[-2]
tm.assert_numpy_array_equal(index_a == item, expected3)
tm.assert_series_equal(series_a == item, Series(expected3))
def test_format(self, simple_index):
# GH35439
idx = simple_index
expected = [str(x) for x in idx]
assert idx.format() == expected
def test_format_empty(self):
# GH35712
empty_idx = self._index_cls([])
assert empty_idx.format() == []
assert empty_idx.format(name=True) == [""]
def test_fillna(self, index):
# GH 11343
if len(index) == 0:
return
elif index.dtype == bool:
# can't hold NAs
return
elif isinstance(index, Index) and is_integer_dtype(index.dtype):
return
elif isinstance(index, MultiIndex):
idx = index.copy(deep=True)
msg = "isna is not defined for MultiIndex"
with pytest.raises(NotImplementedError, match=msg):
idx.fillna(idx[0])
else:
idx = index.copy(deep=True)
result = idx.fillna(idx[0])
tm.assert_index_equal(result, idx)
assert result is not idx
msg = "'value' must be a scalar, passed: "
with pytest.raises(TypeError, match=msg):
idx.fillna([idx[0]])
idx = index.copy(deep=True)
values = idx._values
values[1] = np.nan
idx = type(index)(values)
msg = "does not support 'downcast'"
with pytest.raises(NotImplementedError, match=msg):
# For now at least, we only raise if there are NAs present
idx.fillna(idx[0], downcast="infer")
expected = np.array([False] * len(idx), dtype=bool)
expected[1] = True
tm.assert_numpy_array_equal(idx._isnan, expected)
assert idx.hasnans is True
def test_nulls(self, index):
# this is really a smoke test for the methods
# as these are adequately tested for function elsewhere
if len(index) == 0:
tm.assert_numpy_array_equal(index.isna(), np.array([], dtype=bool))
elif isinstance(index, MultiIndex):
idx = index.copy()
msg = "isna is not defined for MultiIndex"
with pytest.raises(NotImplementedError, match=msg):
idx.isna()
elif not index.hasnans:
tm.assert_numpy_array_equal(index.isna(), np.zeros(len(index), dtype=bool))
tm.assert_numpy_array_equal(index.notna(), np.ones(len(index), dtype=bool))
else:
result = isna(index)
tm.assert_numpy_array_equal(index.isna(), result)
tm.assert_numpy_array_equal(index.notna(), ~result)
def test_empty(self, simple_index):
# GH 15270
idx = simple_index
assert not idx.empty
assert idx[:0].empty
def test_join_self_unique(self, join_type, simple_index):
idx = simple_index
if idx.is_unique:
joined = idx.join(idx, how=join_type)
assert (idx == joined).all()
def test_map(self, simple_index):
# callable
idx = simple_index
result = idx.map(lambda x: x)
# RangeIndex are equivalent to the similar Index with int64 dtype
tm.assert_index_equal(result, idx, exact="equiv")
@pytest.mark.parametrize(
"mapper",
[
lambda values, index: {i: e for e, i in zip(values, index)},
lambda values, index: Series(values, index),
],
)
def test_map_dictlike(self, mapper, simple_index):
idx = simple_index
if isinstance(idx, CategoricalIndex):
# FIXME: this fails with CategoricalIndex bc it goes through
# Categorical.map which ends up calling get_indexer with
# non-unique values, which raises. This _should_ work fine for
# CategoricalIndex.
pytest.skip(f"skipping tests for {type(idx)}")
identity = mapper(idx.values, idx)
result = idx.map(identity)
# RangeIndex are equivalent to the similar Index with int64 dtype
tm.assert_index_equal(result, idx, exact="equiv")
# empty mappable
dtype = None
if idx.dtype.kind == "f":
dtype = idx.dtype
expected = Index([np.nan] * len(idx), dtype=dtype)
result = idx.map(mapper(expected, idx))
tm.assert_index_equal(result, expected)
def test_map_str(self, simple_index):
# GH 31202
idx = simple_index
result = idx.map(str)
expected = Index([str(x) for x in idx], dtype=object)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("copy", [True, False])
@pytest.mark.parametrize("name", [None, "foo"])
@pytest.mark.parametrize("ordered", [True, False])
def test_astype_category(self, copy, name, ordered, simple_index):
# GH 18630
idx = simple_index
if name:
idx = idx.rename(name)
# standard categories
dtype = CategoricalDtype(ordered=ordered)
result = idx.astype(dtype, copy=copy)
expected = CategoricalIndex(idx, name=name, ordered=ordered)
tm.assert_index_equal(result, expected, exact=True)
# non-standard categories
dtype = CategoricalDtype(idx.unique().tolist()[:-1], ordered)
result = idx.astype(dtype, copy=copy)
expected = CategoricalIndex(idx, name=name, dtype=dtype)
tm.assert_index_equal(result, expected, exact=True)
if ordered is False:
# dtype='category' defaults to ordered=False, so only test once
result = idx.astype("category", copy=copy)
expected = CategoricalIndex(idx, name=name)
tm.assert_index_equal(result, expected, exact=True)
def test_is_unique(self, simple_index):
# initialize a unique index
index = simple_index.drop_duplicates()
assert index.is_unique is True
# empty index should be unique
index_empty = index[:0]
assert index_empty.is_unique is True
# test basic dupes
index_dup = index.insert(0, index[0])
assert index_dup.is_unique is False
# single NA should be unique
index_na = index.insert(0, np.nan)
assert index_na.is_unique is True
# multiple NA should not be unique
index_na_dup = index_na.insert(0, np.nan)
assert index_na_dup.is_unique is False
@pytest.mark.arm_slow
def test_engine_reference_cycle(self, simple_index):
# GH27585
index = simple_index
nrefs_pre = len(gc.get_referrers(index))
index._engine
assert len(gc.get_referrers(index)) == nrefs_pre
def test_getitem_2d_deprecated(self, simple_index):
# GH#30588, GH#31479
idx = simple_index
msg = "Multi-dimensional indexing"
with pytest.raises(ValueError, match=msg):
idx[:, None]
if not isinstance(idx, RangeIndex):
# GH#44051 RangeIndex already raised pre-2.0 with a different message
with pytest.raises(ValueError, match=msg):
idx[True]
with pytest.raises(ValueError, match=msg):
idx[False]
else:
msg = "only integers, slices"
with pytest.raises(IndexError, match=msg):
idx[True]
with pytest.raises(IndexError, match=msg):
idx[False]
def test_copy_shares_cache(self, simple_index):
# GH32898, GH36840
idx = simple_index
idx.get_loc(idx[0]) # populates the _cache.
copy = idx.copy()
assert copy._cache is idx._cache
def test_shallow_copy_shares_cache(self, simple_index):
# GH32669, GH36840
idx = simple_index
idx.get_loc(idx[0]) # populates the _cache.
shallow_copy = idx._view()
assert shallow_copy._cache is idx._cache
shallow_copy = idx._shallow_copy(idx._data)
assert shallow_copy._cache is not idx._cache
assert shallow_copy._cache == {}
def test_index_groupby(self, simple_index):
idx = simple_index[:5]
to_groupby = np.array([1, 2, np.nan, 2, 1])
tm.assert_dict_equal(
idx.groupby(to_groupby), {1.0: idx[[0, 4]], 2.0: idx[[1, 3]]}
)
to_groupby = DatetimeIndex(
[
datetime(2011, 11, 1),
datetime(2011, 12, 1),
pd.NaT,
datetime(2011, 12, 1),
datetime(2011, 11, 1),
],
tz="UTC",
).values
ex_keys = [Timestamp("2011-11-01"), Timestamp("2011-12-01")]
expected = {ex_keys[0]: idx[[0, 4]], ex_keys[1]: idx[[1, 3]]}
tm.assert_dict_equal(idx.groupby(to_groupby), expected)
def test_append_preserves_dtype(self, simple_index):
# In particular Index with dtype float32
index = simple_index
N = len(index)
result = index.append(index)
assert result.dtype == index.dtype
tm.assert_index_equal(result[:N], index, check_exact=True)
tm.assert_index_equal(result[N:], index, check_exact=True)
alt = index.take(list(range(N)) * 2)
tm.assert_index_equal(result, alt, check_exact=True)
def test_inv(self, simple_index):
idx = simple_index
if idx.dtype.kind in ["i", "u"]:
res = ~idx
expected = Index(~idx.values, name=idx.name)
tm.assert_index_equal(res, expected)
# check that we are matching Series behavior
res2 = ~Series(idx)
tm.assert_series_equal(res2, Series(expected))
else:
if idx.dtype.kind == "f":
msg = "ufunc 'invert' not supported for the input types"
else:
msg = "bad operand"
with pytest.raises(TypeError, match=msg):
~idx
# check that we get the same behavior with Series
with pytest.raises(TypeError, match=msg):
~Series(idx)
def test_is_boolean_is_deprecated(self, simple_index):
# GH50042
idx = simple_index
with tm.assert_produces_warning(FutureWarning):
idx.is_boolean()
def test_is_floating_is_deprecated(self, simple_index):
# GH50042
idx = simple_index
with tm.assert_produces_warning(FutureWarning):
idx.is_floating()
def test_is_integer_is_deprecated(self, simple_index):
# GH50042
idx = simple_index
with tm.assert_produces_warning(FutureWarning):
idx.is_integer()
def test_holds_integer_deprecated(self, simple_index):
# GH50243
idx = simple_index
msg = f"{type(idx).__name__}.holds_integer is deprecated. "
with tm.assert_produces_warning(FutureWarning, match=msg):
idx.holds_integer()
def test_is_numeric_is_deprecated(self, simple_index):
# GH50042
idx = simple_index
with tm.assert_produces_warning(
FutureWarning,
match=f"{type(idx).__name__}.is_numeric is deprecated. ",
):
idx.is_numeric()
def test_is_categorical_is_deprecated(self, simple_index):
# GH50042
idx = simple_index
with tm.assert_produces_warning(
FutureWarning,
match=r"Use pandas\.api\.types\.is_categorical_dtype instead",
):
idx.is_categorical()
def test_is_interval_is_deprecated(self, simple_index):
# GH50042
idx = simple_index
with tm.assert_produces_warning(FutureWarning):
idx.is_interval()
def test_is_object_is_deprecated(self, simple_index):
# GH50042
idx = simple_index
with tm.assert_produces_warning(FutureWarning):
idx.is_object()
class NumericBase(Base):
"""
Base class for numeric index (incl. RangeIndex) sub-class tests.
"""
def test_constructor_unwraps_index(self, dtype):
index_cls = self._index_cls
idx = Index([1, 2], dtype=dtype)
result = index_cls(idx)
expected = np.array([1, 2], dtype=idx.dtype)
tm.assert_numpy_array_equal(result._data, expected)
def test_where(self):
# Tested in numeric.test_indexing
pass
def test_can_hold_identifiers(self, simple_index):
idx = simple_index
key = idx[0]
assert idx._can_hold_identifiers_and_holds_name(key) is False
def test_view(self, dtype):
index_cls = self._index_cls
idx = index_cls([], dtype=dtype, name="Foo")
idx_view = idx.view()
assert idx_view.name == "Foo"
idx_view = idx.view(dtype)
tm.assert_index_equal(idx, index_cls(idx_view, name="Foo"), exact=True)
idx_view = idx.view(index_cls)
tm.assert_index_equal(idx, index_cls(idx_view, name="Foo"), exact=True)
def test_format(self, simple_index):
# GH35439
idx = simple_index
max_width = max(len(str(x)) for x in idx)
expected = [str(x).ljust(max_width) for x in idx]
assert idx.format() == expected
def test_numeric_compat(self):
pass # override Base method
def test_insert_non_na(self, simple_index):
# GH#43921 inserting an element that we know we can hold should
# not change dtype or type (except for RangeIndex)
index = simple_index
result = index.insert(0, index[0])
expected = Index([index[0]] + list(index), dtype=index.dtype)
tm.assert_index_equal(result, expected, exact=True)
def test_insert_na(self, nulls_fixture, simple_index):
# GH 18295 (test missing)
index = simple_index
na_val = nulls_fixture
if na_val is pd.NaT:
expected = Index([index[0], pd.NaT] + list(index[1:]), dtype=object)
else:
expected = Index([index[0], np.nan] + list(index[1:]))
# GH#43921 we preserve float dtype
if index.dtype.kind == "f":
expected = Index(expected, dtype=index.dtype)
result = index.insert(1, na_val)
tm.assert_index_equal(result, expected, exact=True)
def test_arithmetic_explicit_conversions(self):
# GH 8608
# add/sub are overridden explicitly for Float/Int Index
index_cls = self._index_cls
if index_cls is RangeIndex:
idx = RangeIndex(5)
else:
idx = index_cls(np.arange(5, dtype="int64"))
# float conversions
arr = np.arange(5, dtype="int64") * 3.2
expected = Index(arr, dtype=np.float64)
fidx = idx * 3.2
tm.assert_index_equal(fidx, expected)
fidx = 3.2 * idx
tm.assert_index_equal(fidx, expected)
# interops with numpy arrays
expected = Index(arr, dtype=np.float64)
a = np.zeros(5, dtype="float64")
result = fidx - a
tm.assert_index_equal(result, expected)
expected = Index(-arr, dtype=np.float64)
a = np.zeros(5, dtype="float64")
result = a - fidx
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("complex_dtype", [np.complex64, np.complex128])
def test_astype_to_complex(self, complex_dtype, simple_index):
result = simple_index.astype(complex_dtype)
assert type(result) is Index and result.dtype == complex_dtype
def test_cast_string(self, dtype):
result = self._index_cls(["0", "1", "2"], dtype=dtype)
expected = self._index_cls([0, 1, 2], dtype=dtype)
tm.assert_index_equal(result, expected)