Inzynierka_Gwiazdy/machine_learning/Lib/site-packages/sklearn/utils/fixes.py
2023-09-20 19:46:58 +02:00

217 lines
6.9 KiB
Python

"""Compatibility fixes for older version of python, numpy and scipy
If you add content to this file, please give the version of the package
at which the fix is no longer needed.
"""
# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
# Gael Varoquaux <gael.varoquaux@normalesup.org>
# Fabian Pedregosa <fpedregosa@acm.org>
# Lars Buitinck
#
# License: BSD 3 clause
from importlib import resources
import sys
import sklearn
import numpy as np
import scipy
import scipy.stats
import threadpoolctl
from .deprecation import deprecated
from ..externals._packaging.version import parse as parse_version
np_version = parse_version(np.__version__)
sp_version = parse_version(scipy.__version__)
if sp_version >= parse_version("1.4"):
from scipy.sparse.linalg import lobpcg
else:
# Backport of lobpcg functionality from scipy 1.4.0, can be removed
# once support for sp_version < parse_version('1.4') is dropped
# mypy error: Name 'lobpcg' already defined (possibly by an import)
from ..externals._lobpcg import lobpcg # type: ignore # noqa
try:
from scipy.optimize._linesearch import line_search_wolfe2, line_search_wolfe1
except ImportError: # SciPy < 1.8
from scipy.optimize.linesearch import line_search_wolfe2, line_search_wolfe1 # type: ignore # noqa
def _object_dtype_isnan(X):
return X != X
class loguniform(scipy.stats.reciprocal):
"""A class supporting log-uniform random variables.
Parameters
----------
low : float
The minimum value
high : float
The maximum value
Methods
-------
rvs(self, size=None, random_state=None)
Generate log-uniform random variables
The most useful method for Scikit-learn usage is highlighted here.
For a full list, see
`scipy.stats.reciprocal
<https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.reciprocal.html>`_.
This list includes all functions of ``scipy.stats`` continuous
distributions such as ``pdf``.
Notes
-----
This class generates values between ``low`` and ``high`` or
low <= loguniform(low, high).rvs() <= high
The logarithmic probability density function (PDF) is uniform. When
``x`` is a uniformly distributed random variable between 0 and 1, ``10**x``
are random variables that are equally likely to be returned.
This class is an alias to ``scipy.stats.reciprocal``, which uses the
reciprocal distribution:
https://en.wikipedia.org/wiki/Reciprocal_distribution
Examples
--------
>>> from sklearn.utils.fixes import loguniform
>>> rv = loguniform(1e-3, 1e1)
>>> rvs = rv.rvs(random_state=42, size=1000)
>>> rvs.min() # doctest: +SKIP
0.0010435856341129003
>>> rvs.max() # doctest: +SKIP
9.97403052786026
"""
# TODO: remove when the minimum scipy version is >= 1.5
if sp_version >= parse_version("1.5"):
from scipy.linalg import eigh as _eigh # noqa
else:
def _eigh(*args, **kwargs):
"""Wrapper for `scipy.linalg.eigh` that handles the deprecation of `eigvals`."""
eigvals = kwargs.pop("subset_by_index", None)
return scipy.linalg.eigh(*args, eigvals=eigvals, **kwargs)
# Rename the `method` kwarg to `interpolation` for NumPy < 1.22, because
# `interpolation` kwarg was deprecated in favor of `method` in NumPy >= 1.22.
def _percentile(a, q, *, method="linear", **kwargs):
return np.percentile(a, q, interpolation=method, **kwargs)
if np_version < parse_version("1.22"):
percentile = _percentile
else: # >= 1.22
from numpy import percentile # type: ignore # noqa
# compatibility fix for threadpoolctl >= 3.0.0
# since version 3 it's possible to setup a global threadpool controller to avoid
# looping through all loaded shared libraries each time.
# the global controller is created during the first call to threadpoolctl.
def _get_threadpool_controller():
if not hasattr(threadpoolctl, "ThreadpoolController"):
return None
if not hasattr(sklearn, "_sklearn_threadpool_controller"):
sklearn._sklearn_threadpool_controller = threadpoolctl.ThreadpoolController()
return sklearn._sklearn_threadpool_controller
def threadpool_limits(limits=None, user_api=None):
controller = _get_threadpool_controller()
if controller is not None:
return controller.limit(limits=limits, user_api=user_api)
else:
return threadpoolctl.threadpool_limits(limits=limits, user_api=user_api)
threadpool_limits.__doc__ = threadpoolctl.threadpool_limits.__doc__
def threadpool_info():
controller = _get_threadpool_controller()
if controller is not None:
return controller.info()
else:
return threadpoolctl.threadpool_info()
threadpool_info.__doc__ = threadpoolctl.threadpool_info.__doc__
@deprecated(
"The function `delayed` has been moved from `sklearn.utils.fixes` to "
"`sklearn.utils.parallel`. This import path will be removed in 1.5."
)
def delayed(function):
from sklearn.utils.parallel import delayed
return delayed(function)
# TODO: Remove when SciPy 1.11 is the minimum supported version
def _mode(a, axis=0):
if sp_version >= parse_version("1.9.0"):
mode = scipy.stats.mode(a, axis=axis, keepdims=True)
if sp_version >= parse_version("1.10.999"):
# scipy.stats.mode has changed returned array shape with axis=None
# and keepdims=True, see https://github.com/scipy/scipy/pull/17561
if axis is None:
mode = np.ravel(mode)
return mode
return scipy.stats.mode(a, axis=axis)
###############################################################################
# Backport of Python 3.9's importlib.resources
# TODO: Remove when Python 3.9 is the minimum supported version
def _open_text(data_module, data_file_name):
if sys.version_info >= (3, 9):
return resources.files(data_module).joinpath(data_file_name).open("r")
else:
return resources.open_text(data_module, data_file_name)
def _open_binary(data_module, data_file_name):
if sys.version_info >= (3, 9):
return resources.files(data_module).joinpath(data_file_name).open("rb")
else:
return resources.open_binary(data_module, data_file_name)
def _read_text(descr_module, descr_file_name):
if sys.version_info >= (3, 9):
return resources.files(descr_module).joinpath(descr_file_name).read_text()
else:
return resources.read_text(descr_module, descr_file_name)
def _path(data_module, data_file_name):
if sys.version_info >= (3, 9):
return resources.as_file(resources.files(data_module).joinpath(data_file_name))
else:
return resources.path(data_module, data_file_name)
def _is_resource(data_module, data_file_name):
if sys.version_info >= (3, 9):
return resources.files(data_module).joinpath(data_file_name).is_file()
else:
return resources.is_resource(data_module, data_file_name)