130 lines
4.2 KiB
Python
130 lines
4.2 KiB
Python
import os
|
|
import time
|
|
|
|
import pandas as pd
|
|
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
|
|
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
|
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
|
|
from sklearn.naive_bayes import GaussianNB
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
from sklearn import preprocessing
|
|
from sklearn.preprocessing import StandardScaler
|
|
from sklearn.tree import DecisionTreeClassifier
|
|
from sklearn.model_selection import ParameterGrid
|
|
|
|
TRAIN_DATA_DIR = "datasets_train_raw"
|
|
TEST_DATA_DIR = "datasets_test"
|
|
|
|
|
|
def invoke_and_measure(func, *args, **kwargs):
|
|
start_time = time.time()
|
|
result = func(*args, **kwargs)
|
|
end_time = time.time()
|
|
|
|
elapsed_time = end_time - start_time
|
|
return result, elapsed_time
|
|
|
|
|
|
def load_dataset(directory):
|
|
df_list = []
|
|
for file in os.listdir(directory):
|
|
file_path = os.path.join(directory, file)
|
|
df, load_time = invoke_and_measure(pd.read_csv, file_path, delim_whitespace=True, skiprows=1,
|
|
names=["tbid", "tphys", "r", "vr", "vt", "ik1", "ik2", "sm1", "sm2", "a",
|
|
"e",
|
|
"collapsed"])
|
|
df_list.append(df)
|
|
return pd.concat(df_list, ignore_index=True).sample(frac=0.01, random_state=42)
|
|
|
|
|
|
data_train = load_dataset(TRAIN_DATA_DIR)
|
|
data_test = load_dataset(TEST_DATA_DIR)
|
|
|
|
merged_data = pd.merge(data_train, data_test, indicator=True, how='outer')
|
|
overlap_rows = merged_data[merged_data['_merge'] == 'both']
|
|
if overlap_rows.empty:
|
|
print("There are no overlapping rows between train and test datasets.")
|
|
else:
|
|
print("Train and test datasets have following overlapping rows: ")
|
|
print(overlap_rows)
|
|
|
|
X_train = data_train.iloc[:, 1:-1].values
|
|
y_train = data_train.iloc[:, -1].values
|
|
|
|
lab = preprocessing.LabelEncoder()
|
|
y_train_transformed = lab.fit_transform(y_train)
|
|
|
|
X_test = data_test.iloc[:, 1:-1].values
|
|
y_test = data_test.iloc[:, -1].values
|
|
y_test_transformed = lab.fit_transform(y_test)
|
|
|
|
classifiers_and_parameters = [
|
|
{
|
|
"name": "Nearest Neighbors",
|
|
"classifier": KNeighborsClassifier(),
|
|
"parameters": {
|
|
"n_neighbors": [3, 5, 10, 50]
|
|
}
|
|
},
|
|
{
|
|
"name": "Decision Tree",
|
|
"classifier": DecisionTreeClassifier(),
|
|
"parameters": {
|
|
"max_depth": [10, 20, 50]
|
|
}
|
|
},
|
|
{
|
|
"name": "Random Forest",
|
|
"classifier": RandomForestClassifier(),
|
|
"parameters": {
|
|
"max_depth": [10, 20, 50],
|
|
"n_estimators": [10, 50, 100],
|
|
"max_features": ['sqrt', 'log2']
|
|
}
|
|
},
|
|
{
|
|
"name": "Naive Bayes",
|
|
"classifier": GaussianNB(),
|
|
"parameters": {
|
|
"var_smoothing": [1e-09, 1e-08, 1e-07]
|
|
}
|
|
},
|
|
{
|
|
"name": "QDA",
|
|
"classifier": QuadraticDiscriminantAnalysis(),
|
|
"parameters": {
|
|
"reg_param": [0.0, 0.5, 1.0]
|
|
}
|
|
},
|
|
{
|
|
"name": "Gradient Boosting",
|
|
"classifier": GradientBoostingClassifier(),
|
|
"parameters": {
|
|
"learning_rate": [0.01, 0.05, 0.1],
|
|
"n_estimators": [50, 100, 200]
|
|
}
|
|
}
|
|
]
|
|
|
|
scaler = StandardScaler()
|
|
X_train_scaled = scaler.fit_transform(X_train)
|
|
X_test_scaled = scaler.transform(X_test)
|
|
|
|
for item in classifiers_and_parameters:
|
|
name = item["name"]
|
|
clf = item["classifier"]
|
|
param_grid = ParameterGrid(item["parameters"])
|
|
|
|
for params in param_grid:
|
|
clf.set_params(**params)
|
|
_, fit_time = invoke_and_measure(clf.fit, X_train_scaled, y_train_transformed)
|
|
y_pred, pred_time = invoke_and_measure(clf.predict, X_test_scaled)
|
|
|
|
accuracy = accuracy_score(y_test_transformed, y_pred)
|
|
precision = precision_score(y_test_transformed, y_pred)
|
|
recall = recall_score(y_test_transformed, y_pred)
|
|
f1 = f1_score(y_test_transformed, y_pred)
|
|
print(
|
|
f"{name} with params {params}: accuracy={accuracy * 100:.2f}% precision={precision * 100:.2f}% recall={recall * 100:.2f}% "
|
|
f"train_time={fit_time:.5f}s predict_time={pred_time:.5f}s")
|