Dodanie wyświetlania trasy od wózka do paczki za pomocą astar
This commit is contained in:
parent
5a728385d2
commit
e8dfdfda68
@ -10,6 +10,8 @@ from Truck import Truck
|
||||
from Global_variables import Global_variables as G_var
|
||||
from pygame.constants import *
|
||||
|
||||
from astar import Pathfinding, State
|
||||
|
||||
|
||||
class Environment:
|
||||
def __init__(self, window):
|
||||
@ -25,14 +27,31 @@ class Environment:
|
||||
self.truck = new_truck
|
||||
self.moving_truck = Moving_truck(
|
||||
self.window, self.enviroment_2d, self.truck)
|
||||
self.astar = Pathfinding(self.enviroment_2d)
|
||||
|
||||
def draw_all_elements(self):
|
||||
for row in self.enviroment_2d:
|
||||
for field in row:
|
||||
field.draw()
|
||||
self.grid.draw_grid()
|
||||
self.use_astar() # w przyszlosci trzeba przeniesc funkcje w jakies logiczniejsze miejsce np funkcje update()
|
||||
self.astar.draw_path(self.window)
|
||||
pygame.display.flip()
|
||||
|
||||
def use_astar(self):
|
||||
start_state = State(1,self.truck.x,self.truck.y)
|
||||
package = self.find_packate()
|
||||
end_state = State(1,package.x, package.y)
|
||||
self.astar.find_path(start_state,end_state)
|
||||
|
||||
def find_packate(self): #ta funkcja została zrobiona na szybko, może nie być potrzebna w przyszłości kiedy
|
||||
#ktoś wpadnie na lepsze rozwiązanie
|
||||
for row in self.enviroment_2d:
|
||||
for field in row:
|
||||
if isinstance(field,Package):
|
||||
return field
|
||||
return None
|
||||
|
||||
def update_truck(self, event):
|
||||
if event.type == KEYDOWN:
|
||||
if event.key == K_LEFT:
|
||||
|
124
astar.py
124
astar.py
@ -1,8 +1,15 @@
|
||||
from ast import walk
|
||||
import math
|
||||
|
||||
import pygame
|
||||
from Global_variables import Global_variables as G_var
|
||||
from Shelf import Shelf
|
||||
|
||||
|
||||
class State:
|
||||
|
||||
def __init__(self, direction, x, y):
|
||||
self.direction = direction # kierunek w ktorym "patrzy wozek"
|
||||
self.direction = direction # kierunek w ktorym "patrzy wozek"
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
||||
@ -23,11 +30,13 @@ class State:
|
||||
|
||||
|
||||
class Node:
|
||||
def __init__(self, action, state, parent):
|
||||
def __init__(self, state, walkable):
|
||||
self.state = state
|
||||
self.action = action # akcja jaką ma wykonać (jedz prawo, lewo, przod)
|
||||
self.direction = state.direction
|
||||
self.parent = parent # ojciec wierzchołka
|
||||
self.walkable = walkable
|
||||
self.g_cost = 0
|
||||
self.h_cost = 0
|
||||
self.parent = None
|
||||
|
||||
def get_action(self):
|
||||
return self.action
|
||||
@ -38,6 +47,110 @@ class Node:
|
||||
def get_parent(self):
|
||||
return self.parent
|
||||
|
||||
def f_cost(self):
|
||||
if self.walkable:
|
||||
return self.g_cost + self.h_cost
|
||||
else:
|
||||
return math.inf
|
||||
|
||||
|
||||
class Pathfinding:
|
||||
def __init__(self, enviroment_2d):
|
||||
# self.grid = []
|
||||
self.grid = [[ # tworze pustej tablicy o wymiarach naszej kraty
|
||||
None
|
||||
for y in range(G_var().DIMENSION_Y)]
|
||||
for x in range(G_var().DIMENSION_X)
|
||||
]
|
||||
for x in range(G_var().DIMENSION_X): # zapełnianie tablicy obiektami Node
|
||||
for y in range(G_var().DIMENSION_Y):
|
||||
is_walkable = True
|
||||
if isinstance(enviroment_2d[x][y], Shelf):
|
||||
is_walkable = False
|
||||
self.grid[x][y] = Node(State(1, x, y), is_walkable)
|
||||
|
||||
self.path = []
|
||||
|
||||
def succ(self,node): #funckja zwraca sąsiadów noda w argumencie
|
||||
node_x = node.state.x
|
||||
node_y = node.state.y
|
||||
neighbours = []
|
||||
neighbours_cords = [[1,0],[-1,0],[0,-1],[0,1]]
|
||||
for cord in neighbours_cords:
|
||||
neighbour_x = node_x + cord[0]
|
||||
neighbour_y = node_y + cord[1]
|
||||
if(neighbour_x >= 0 and neighbour_x < G_var().DIMENSION_X and neighbour_y >= 0 and neighbour_y < G_var().DIMENSION_Y):
|
||||
neighbours.append(self.grid[neighbour_x][neighbour_y])
|
||||
return neighbours
|
||||
|
||||
|
||||
def find_path(self, starting_state, target_state): # algorytm wyszukiwania trasy
|
||||
start_node = self.grid[starting_state.x][starting_state.y]
|
||||
target_node = self.grid[target_state.x][target_state.y]
|
||||
|
||||
fringe = []
|
||||
explored = []
|
||||
|
||||
fringe.append(start_node)
|
||||
|
||||
while len(fringe) > 0:
|
||||
current_node = fringe[0]
|
||||
for i in range(1, len(fringe)):
|
||||
if fringe[i].f_cost() < current_node.f_cost() or (fringe[i].f_cost() == current_node.f_cost() and fringe[i].h_cost < current_node.h_cost):
|
||||
current_node = fringe[i]
|
||||
|
||||
fringe.remove(current_node)
|
||||
explored.append(current_node)
|
||||
|
||||
if current_node.state == target_node.state:
|
||||
path = self.retrace_path(start_node,target_node)
|
||||
self.path = path
|
||||
|
||||
for neighbour in self.succ(current_node):
|
||||
if not neighbour.walkable or neighbour in explored:
|
||||
continue
|
||||
new_movement_cost_to_neighbour = current_node.g_cost + self.get_distance(current_node,neighbour)
|
||||
if new_movement_cost_to_neighbour < neighbour.g_cost or not neighbour in fringe:
|
||||
neighbour.g_cost = new_movement_cost_to_neighbour
|
||||
neighbour.h_cost = self.get_distance(neighbour,target_node)
|
||||
neighbour.parent = current_node
|
||||
if not neighbour in fringe:
|
||||
fringe.append(neighbour)
|
||||
|
||||
def get_distance(self, node_a, node_b): # funckja liczy dystans dla odległości między dwoma nodami
|
||||
dist_x = abs(node_a.state.x - node_b.state.x)
|
||||
dist_y = abs(node_a.state.y - node_b.state.y)
|
||||
|
||||
if dist_x > dist_y:
|
||||
return 10 * (dist_x - dist_y)
|
||||
return 10 * (dist_y - dist_x)
|
||||
|
||||
def retrace_path(self, start_node, end_node): # funkcja zwraca tablice która ma w sobie wartosci pola parent
|
||||
# od end_node do start_node
|
||||
path = []
|
||||
current_node = end_node
|
||||
|
||||
while current_node != start_node:
|
||||
path.append(current_node)
|
||||
current_node = current_node.parent
|
||||
path.reverse()
|
||||
return path
|
||||
|
||||
def draw_path(self, window): # rysuję ścieżkę na ekranie
|
||||
color = (213, 55, 221)
|
||||
for node in self.path:
|
||||
node_x = node.state.x
|
||||
node_y = node.state.y
|
||||
block = pygame.Rect(
|
||||
node_x * G_var().RECT_SIZE, node_y *
|
||||
G_var().RECT_SIZE, G_var().RECT_SIZE, G_var().RECT_SIZE
|
||||
)
|
||||
pygame.draw.rect(window,
|
||||
color,
|
||||
block)
|
||||
|
||||
|
||||
|
||||
|
||||
def cost(node): # funkcja kosztu : ile kosztuje przejechanie przez dane pole
|
||||
cost = 0
|
||||
@ -45,6 +158,7 @@ def cost(node): # funkcja kosztu : ile kosztuje przejechanie przez dane pole
|
||||
cost = cost + 1 + 1
|
||||
node = node.parent
|
||||
return cost
|
||||
#
|
||||
|
||||
|
||||
def f(goal, node): # funkcja zwracająca sumę funkcji kosztu oraz heurestyki
|
||||
@ -67,6 +181,6 @@ def print_moves(elem): # zwraca listę ruchów jakie należy wykonać by dotrze
|
||||
def succ(elem): # funkcja następnika, przypisuje jakie akcje są możliwe do wykonania na danym polu oraz jaki będzie stan (kierunek, położenie) po wykonaniu tej akcji
|
||||
pass
|
||||
|
||||
|
||||
def graphsearch(explored, fringe, goaltest, istate): # przeszukiwanie grafu wszerz
|
||||
pass
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user