From dfc28cbc9a743362b7f091f5e5b82c62382c3be9 Mon Sep 17 00:00:00 2001 From: AWieczarek Date: Mon, 6 May 2024 19:46:35 +0200 Subject: [PATCH] IUM_06 --- IUM_05-predict.py | 14 +++++++++++++- 1 file changed, 13 insertions(+), 1 deletion(-) diff --git a/IUM_05-predict.py b/IUM_05-predict.py index 60681b2..1d5b603 100644 --- a/IUM_05-predict.py +++ b/IUM_05-predict.py @@ -2,18 +2,30 @@ import pandas as pd import numpy as np import tensorflow as tf +# Load the test data test_data = pd.read_csv('./beer_reviews_test.csv') X_test = test_data[['review_aroma', 'review_appearance', 'review_palate', 'review_taste']] y_test = test_data['review_overall'] +# Load the model model = tf.keras.models.load_model('beer_review_sentiment_model.h5') +# Preprocess the test data tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=10000) tokenizer.fit_on_texts(X_test) X_test_seq = tokenizer.texts_to_sequences(X_test) X_test_pad = tf.keras.preprocessing.sequence.pad_sequences(X_test_seq, maxlen=100) +# Make predictions predictions = model.predict(X_test_pad) -results = pd.DataFrame({'Predictions': predictions.flatten(), 'Actual': y_test}) +# Check the shape of the predictions +print(f'Predictions shape: {predictions.shape}') + +# If predictions have more than one dimension, select only one dimension +if len(predictions.shape) > 1: + predictions = predictions[:, 0] + +# Save predictions and actual data to a CSV file +results = pd.DataFrame({'Predictions': predictions, 'Actual': y_test}) results.to_csv('beer_review_sentiment_predictions.csv', index=False) \ No newline at end of file