import pandas as pd import tensorflow as tf import sys train_data = pd.read_csv('./beer_reviews_train.csv') X_train = train_data[['review_aroma', 'review_appearance', 'review_palate', 'review_taste']] y_train = train_data['review_overall'] tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=10000) tokenizer.fit_on_texts(X_train) X_train_seq = tokenizer.texts_to_sequences(X_train) X_train_pad = tf.keras.preprocessing.sequence.pad_sequences(X_train_seq, maxlen=100) model = tf.keras.Sequential([ tf.keras.layers.Embedding(input_dim=10000, output_dim=16, input_length=100), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(16, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(X_train_pad, y_train, epochs=int(sys.argv[1]), batch_size=int(sys.argv[2]), validation_split=0.1) model.save('beer_review_sentiment_model.h5')