import pandas as pd import numpy as np import tensorflow as tf test_data = pd.read_csv('./beer_reviews_test.csv') X_test = test_data[['review_aroma', 'review_appearance', 'review_palate', 'review_taste']] y_test = test_data['review_overall'] model = tf.keras.models.load_model('beer_review_sentiment_model.h5') tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=10000) tokenizer.fit_on_texts(X_test) X_test_seq = tokenizer.texts_to_sequences(X_test) X_test_pad = tf.keras.preprocessing.sequence.pad_sequences(X_test_seq, maxlen=100) predictions = model.predict(X_test_pad) results = pd.DataFrame({'Predictions': predictions.flatten(), 'Actual': y_test}) results.to_csv('beer_review_sentiment_predictions.csv', index=False)