import pandas as pd from sklearn.metrics import accuracy_score, precision_recall_fscore_support, mean_squared_error from math import sqrt import sys # Load the predictions data data = pd.read_csv('beer_review_sentiment_predictions.csv') y_pred = data['Predictions'] y_test = data['Actual'] y_test_binary = (y_test >= 3).astype(int) build_number = sys.argv[1] # Calculate metrics accuracy = accuracy_score(y_test_binary, y_pred.round()) precision, recall, f1, _ = precision_recall_fscore_support(y_test_binary, y_pred.round(), average='micro') rmse = sqrt(mean_squared_error(y_test, y_pred)) print(f'Accuracy: {accuracy}') print(f'Micro-avg Precision: {precision}') print(f'Micro-avg Recall: {recall}') print(f'F1 Score: {f1}') print(f'RMSE: {rmse}') with open(r"beer_metrics.txt", "a") as f: f.write(f"{accuracy},{build_number}\n")