import pandas as pd import numpy as np import tensorflow as tf # Load the test data test_data = pd.read_csv('./beer_reviews_test.csv') X_test = test_data[['review_aroma', 'review_appearance', 'review_palate', 'review_taste']] y_test = test_data['review_overall'] # Load the model model = tf.keras.models.load_model('beer_review_sentiment_model.h5') # Preprocess the test data tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=10000) tokenizer.fit_on_texts(X_test) X_test_seq = tokenizer.texts_to_sequences(X_test) X_test_pad = tf.keras.preprocessing.sequence.pad_sequences(X_test_seq, maxlen=100) # Make predictions predictions = model.predict(X_test_pad) print(model.summary()) print(f'X_test_pad shape: {X_test_pad.shape}') # Check the shape of the predictions print(f'Predictions shape: {predictions.shape}') # If predictions have more than one dimension, select only one dimension if len(predictions.shape) > 1: predictions = predictions[:, 0] # Save predictions and actual data to a CSV file results = pd.DataFrame({'Predictions': predictions, 'Actual': y_test}) results.to_csv('beer_review_sentiment_predictions.csv', index=False)