import pandas as pd from tensorflow import keras import numpy as np from sklearn.metrics import root_mean_squared_error import matplotlib.pyplot as plt np.set_printoptions(threshold=np.inf) data = pd.read_csv("df_test.csv") X_test = data.drop("Performance Index", axis=1) y_test = data["Performance Index"] model = keras.models.load_model("model.keras") predictions = model.predict(X_test) with open("predictions.txt", "w") as f: f.write(str(predictions)) accuracy = root_mean_squared_error(y_test, predictions) with open("rmse.txt", 'a') as file: file.write(str(accuracy)+"\n") with open("rmse.txt", 'r') as file: lines = file.readlines() num_lines = len(lines) lines = [float(line.replace("\n", "")) for line in lines] plt.plot(range(1, num_lines+1), lines) plt.xlabel("Build number") plt.ylabel("RMSE value") plt.title("RMSE") plt.savefig("rmse.jpg")